SnO2 nanoparticles: synthesis, characterization and photocatalytic activity
DOI:
https://doi.org/10.51316/jca.2022.003Keywords:
SnO2, nanoparticles, photoactivity, solar light, rhodamine BAbstract
SnO2 nanoparticles have been synthesized using precipitation method and heat treatment. Firstly, SnCl4.5H2O was reacted with NaOH solution, and than the precipitate heat treated at 350 oC, 450 oC and 550 oC. The obtained materials were characterized by X-Ray diffraction (XRD) infrared spectra (IR) energy-dispersive X-ray spectroscopy (EDS) scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic degradation of rhodamine B (RhB) using SnO2 nanoparticles was investigated. The results show that the SnO2 nanoparticles exhibited a significantly enhanced photocatalytic activity. The photoactivity of SnO2 nanoparticles photocatalysts can be ascribed to the enhanced electron-hole separation.
Downloads
References
P. Thiru Ramanathan, M. Sheik Abdullah and L. Amalraj, Journal for Bloomers of Research, 5(2) (2013) 651–655. https://doi.org/10.1016/j.materresbull.2004.08.006
Y. Li, L.Qiao, L. Wang, Y. Zeng, W. Fu, andH. Yang, Applied Surface Science, 285(19) (2013) 130–135. https://doi.org/10.1016/j.apsusc.2013.08.010
W.-W. Wang, Y.-J. Zhu, and L.-X. Yang, Advanced Functional Materials, 17(1) (2007) 59–64. https://doi.org/10.1002/adfm.200600431
S. K. Kansal, M. Singh, and D. Sud, Journal of Hazardous Materials, 141(3) (2007) 581–590. https://doi.org/10.1016/j.jhazmat.2006.07.035
J. Xie, H. Wang, M. Duan, and L. Zhang, Applied Surface Science, 1257(15) (2011) 6358–6363. https://doi.org/10.1016/j.apsusc.2011.01.105
H. Zhang and C. Hu, Catalysis Communications, 14(1) (2011) 32–36. https://doi.org/10.1016/j.catcom.2011.07.012
E. Kusvuran, A. Samil, O. M. Atanur, and O. Erbatur, Applied Catalysis B: Environmental, 58(3-4) (2005) 211–216. https://doi.org/10.1016/j.apcatb.2004.11.023
S. A. Khayyat, M. S. Akhtar, and A. Umar, Materials Letters, 81(4) (2012) 239–241. https://doi.org/10.1016/j.matlet.2012.04.039
S. Jana, B. C. Mitra, P. Bera, M. Sikdar, and A. Mondal, Journal of Alloys and Compounds, 602(2) (2014) 42–48. https://doi.org/10.1016/j.jallcom.2014.02.182
V. Ratchagar and K. Jagannathan, Oriental Journal of Chemistry, 32(1) (2016) 207-212. http://doi.org/10.13005/ojc/320121
Z. Chen, D. Pan, Z. Li et al, Chemical Reviews, 114(15) (2014) 7442–7486. https://doi.org/10.1021/cr4007335
Kim S. P., Choi M. Y., & Choi H. C, Materials Research Bulletin, 74, (2016) 85–89. https://doi.org/10.1016/j.materresbull.2015.10.024
Jing Wang, Hui-qing Fan and Hua-wa Yu, Journal of Nanomaterials, 2015, (2015) 1–8. https://doi.org/10.1155/2015/395483
Weigen Chen, Qu Zhou, FuWan, and Tuoyu Gao, Journal of Nanomaterials, 2012, (2012) 1–9. https://doi.org/10.1155/2012/612420
Selvi N., Sankar S., & Dinakaran K, Superlattices and Microstructures, 76, (2014) 277–287. https://doi.org/10.1016/j.spmi.2014.10.015
Wenjin Wan, Yuehua Li, Xingping Ren, Yinping Zhao, Fan Gao and Heyun Zhao, Nanomaterials 8(2) (2018) 112. https://doi.org/10.3390/nano8020112
Shuang Zhan, Dongmei Li, Shengfa Liang, Xin Chen and Xia Li, Sensors, 13(4) (2013) 4378–4389. https://doi.org/10.3390/s130404378
R. Yang, Y. Gu, Y. Li, J. Zheng, and X. Li, ActaMaterialia, 58(3) (2010) 866–874. https://doi.org/10.1016/j.actamat.2009.10.001
B. Mehrabi Matin, Y. Mortazavi, A. A. Khodadadi, A. Abbasi, and A. Anaraki Firooz, Sensors and Actuators B: Chemical, 151(1) (2010) 140–145. https://doi.org/10.1016/j.snb.2010.09.033
L. Wang, S. Wang, Y. Wang, H. Zhang, Y. Kang and W. Huang, Sensors and Actuators B: Chemical, 188, (2013) 85–93. https://doi.org/10.1016/j.snb.2013.06.076
Cordier, Habib Elhouichet, Ahmed Adda, Bernard Gelloz, Myriam Moreau, Alexandre Barras, Mokhtar Férid, Rabah Boukherroub, Materials Research Bulletin, 83, (2016) 481–490. https://doi.org/10.1016/j.materresbull.2016.06.041Walid Ben Haj Othmen, Brigitte Sieber, Catherine
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2021-DQN-05