Photocatalytic degradation of methylene blue from an aqueous solution using SnO2/BaTiO3 heterostructure

Authors

  • Nguyen Thi Viet Nga Faculty of Education, Quy Nhon University Author
  • Nguyen Le Thanh Hang Faculty of Natural Sciences, Quy Nhon University Author
  • Ho Thi Thanh Faculty of Natural Sciences, Quy Nhon University Author
  • Le Thi Thanh Lieu Faculty of Natural Sciences, Quy Nhon University Author
  • Nguyen Thi Lan Faculty of Natural Sciences, Quy Nhon University Author
  • Pham Ngoc Thuat Vietnam Defence Industry Author
  • Nguyen Van Kim Faculty of Natural Sciences, Quy Nhon University Author

DOI:

https://doi.org/10.51316/jca.2023.006

Keywords:

SnO2/BaTiO3, photocatalyst, methylene blue, visible light

Abstract

In this study, the SnO2/BaTiO3 heterostructure has been fabricated by firstly preparing SnO2 and BaTiO3 through, followed by coupling SnO2 and BaTiO3 by the hydrothermally method. The samples are denoted as SBTO-x:y, where x:y is weight ratio of SnO2 và BaTiO3 (x:y = 1:3, 1:5 và 1:7) in the reaction mixtures. The obtained materials were characterized by XRD, IR, EDS-mapping, SEM. The photocatalytic activity of SBTO-x:y SnO2 and BaTiO3 samples was assessed by degradation of methylene blue in aqueous solution under sunlight. Among them, SBTO-1:5 exhibited the best performance. An enhancement in photocatalytic activity of the composites is believed to the presence of BaTiO3.

Downloads

Download data is not yet available.

References

Danilo spasiano, Raffaele Marotta, Sixto Malato, Pilar Fermandez-Ibanez, Ilaria Di Somma, Applied Catalysis B: Environmental 170–171 (2015) 90–123. https://doi.org/10.1016/j.apcatb.2014.12.050

Harsha Bantawal and D Krishna Bhat, International Journal of Engineering & Technology 7 (2018) 105–109. https://doi.org/10.14419/ijet.v7i4.5.20022

Abdel-Messih, M. F., Ahmed, M. A., & El-Sayed, A. S., Journal of Photochemistry and Photobiology A: Chemistry 260 (2013) 1–8. https://doi.org/10.1016/j.jphotochem.2013.03.011

H. Fan, H. Li, B. Liu, Y. Lu, T. Xie, D. Wang, ACS Appl. Mater. Interfaces 4(9) (2012) 4853–4857. https://doi.org/10.1021/am301199v

T. Xian, H. Yang, L.J. Di, J.F. Dai, Journal of Alloys and Compounds 622 (2015) 1098–1104.

https://doi.org/10.1016/j.jallcom.2014.11.051

S.E. Stanca, R. Muller, M. Urban, A. Csaki, F. Froehlich, C. Krafft, J. Popp, W. Fritzsche, Catalysis Science & Technology 2 (2012) 1472–1479. https://doi.org/10.1039/C2CY20169K

Manoj Nageri , A. B. Shalet, Viswanathan Kumar, Journal of Materials Science: Materials in Electronics 28(13) (2017) 9770–9776. https://doi.org/10.1007/s10854-017-6729-5

S. Selvarajan, P. Malathy, A. Suganthi, M. Rajarajan, Journal of Industrial and Engineering Chemistry 53 (2017) 201–212. https://doi.org/10.1016/j.jiec.2017.04.026

Duran-Jimenez .G, Hernandez-Montoya V., Montes-Moran M. A., Bonilla Petriciolet A. and Rangel-Vazquez N. A. Microporous and Mesoporous Materials 199 (2014) 99–107. https://doi.org/10.1016/j.micromeso.2014.08.013

Fu J., Xu Z., Li Q. S., Chen S., An S. Q. and Zeng Q. F, J. Environ. Sci. 22 (2010) 512–518. https://doi.org/10.1016/S1001-0742(09)60142-X

Kim S. P., Choi M. Y., & Choi H. C, Materials Research Bulletin 74 (2016) 85–89. https://doi.org/10.1016/j.materresbull.2015.10.024

P. Thiru Ramanathan, M.Sheik Abdullah and L. Amalraj, Journal for Bloomers of Research 5(2) (2013) 651–655. https://doi.org/10.1016/j.materresbull.2004.08.006

Jing Wang, Hui-qing Fan and Hua-wa Yu, Journal of Nanomaterials 2015 (2015) 1–8.

https://doi.org/10.1155/2015/395483

Weigen Chen, Qu Zhou, FuWan, and Tuoyu Gao, Journal of Nanomaterials 2012 (2012) 1–9. https://doi.org/10.1155/2012/612420

Pengrong Ren, Huiqing Fan, Xin Wang, Catalysis Communications 25 (2012) 32–35.

https://doi.org/10.1016/j.catcom.2012.04.003

S. Kappadan, S. Thomas, N. Kalarikkal, Materials Chemistry and Physics 255 (2020) 123583. https://doi.org/10.1016/j.matchemphys.2020.123583.

Selvi N., Sankar S., & Dinakaran K, Superlattices and Microstructures 76 (2014) 277–287.

https://doi.org/10.1016/j.spmi.2014.10.015

Wenjin Wan, Yuehua Li, Xingping Ren, Yinping Zhao, Fan Gao and Heyun Zhao Nanomaterials 8(2) (2018) 112. https://doi.org/10.3390/nano8020112

Shuang Zhan, Dongmei Li, Shengfa Liang, Xin Chen and Xia Li, Sensors 13(4) (2013) 4378–4389. https://doi.org/10.3390/s130404378

Ni Y, Zheng H, Xiang N, Yuan K and Hong J, RSC Adv. 5(10) (2015) 7245–7252. https://doi.org/10.1039/C4RA13642J

Kappadan S, Gebreab T W, Thomas S and Kalarikkal N, Mater. Sci. Semicond. Process. 51 (2016) 42–47. https://doi.org/10.1016/j.mssp.2016.04.019

Wang P, Fan C, Wang Y, Ding G and Yuan P, Mater. Res. Bull., 48 (2013), 869–877. https://doi.org/10.1016/j.materresbull.2012.11.075

Published

30-03-2023

Issue

Section

Full Articles

How to Cite

Photocatalytic degradation of methylene blue from an aqueous solution using SnO2/BaTiO3 heterostructure. (2023). Vietnam Journal of Catalysis and Adsorption, 12(1), 35-41. https://doi.org/10.51316/jca.2023.006

Share

Funding data

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1-10 of 139

You may also start an advanced similarity search for this article.