Effect of pH on the photo-Fenton degradation of rhodamine B by Prussian blue/g-C3N4
DOI:
https://doi.org/10.51316/jca.2023.035Keywords:
Prussian blue, g-C3N4, rhodamine B, photo-Fenton, pHAbstract
The pH solution is one of the critical factors affecting the photo-Fenton degradation of dyes in wastewater. The photoactivity of Prussian blue/g-C3N4 was investigated using the photodegradation of RhB acidic, neutral, and essential medium. The results implicated that more than 98.5% removal of RhB was achieved at pH = 3.62 after irradiation for 60 minutes under visible light. The photocatalytic activity of Prussian blue/g-C3N4 showed the best performance in an acidic medium. This is due to the formation of hydroxyl radicals during the photocatalytic degradation of RhB. Thus, this study has shown the role and potential of the application of photocatalysts in the degradation of toxic organic compounds the wastewater.
Downloads
References
C. C. C. Sun, W. Ma, J. Zhao, Phys. Chem. Chem. Phys., 13, (2011) 1957-1969. https://doi.org/10.1039/C0CP01203C
A. A. E.-S. H.M.H. Gad, J. Hazard. Mater., 152, (2009) 1070-1081. https://doi.org/10.1016/j.jhazmat.2009.02.155
A. K.-S. K. Pazdzior, S. Ledakowicz, J. Sojka-Ledakowicz, Z. Mrozinska, R. Zylla, Chemosphere, 75, (2009) 250-255, 2009. https://doi.org/10.1016/j.chemosphere.2008.12.016
W. C. Yuru Wang, Journal of Hazardous Materials, 186, (2011) 1455-1461. https://doi.org/10.1016/j.jhazmat.2010.12.033
L. W. Zhou, L.; Zhang, J.; Lei, J.; Liu, Y., Eur. J. Inorg. Chem., (2016) 5387–5392. https://10.1002/ejic.201600959
C. H. Hsueh, Y.; Wang, C.; Chen, C., Chemosphere, 58 (2005) 1409–1414. https://doi.org/10.1016/j.chemosphere.2004.09.091
J. W. L. Xu, Environ. Sci. Technol. ,46, (2012) 10145–10153. https://doi.org/10.1021/es300303f
H. Z. Y. Wang, M. Li, J. Fan, G. Zhao, Applied Catalysis B: Environmental, 147, (2014) 534-545. https://doi.org/10.1016/j.apcatb.2013.09.017
H. L. C. Wang, Z. Sun, Environmental Photocatalysis (2012) 2012. https://doi.org/10.1155/2012/801694
B. P. Darabdhara G, Das MR, Microchim Acta., 186 (2019) 2019. https://doi.org/10.1007/s00604-018-3112-z
D. K. Wang Z, Liu Z, Zhang Y, Chen Z, Sun H, Ren J, Qu X, Biomaterials, 113 (2017) 145-157. https://doi.org/10.1016/j.biomaterials.2016.10.041
S. U. E. P. Ferreira Neto, A. P. Perissinotto, F. S. de Vicente, S. J. Ribeiro, M. A. Worsley and U. P. Rodrigues-Filho, New J. Chem., (2021) 1-29. https://doi.org/10.1039/D1NJ01141C
L. W. J. Chen, A. Mahmood, Z. Pei, Z. Zhou, X. Chen and Y. Chen, Energy Storage Materials, 25 (2020) 585-612. https://doi.org/10.1016/j.ensm.2019.09.024
K. G. R. Gusain, P. Joshi, O.P. Khatri, Adv. Colloid Interface Sci., 272 (2019) 1-23. https://doi.org/10.1016/j.cis.2019.102009
C. M. C. Vidya, M.N. Chandraprabha, M. Rajshekar, M.A.L. Antony Raj, Journal of Environmental Chemical Engineering, 5 (2017) 3172–3180. https://doi.org/10.1016/j.jece.2017.05.058
A. K. S. K. Byrappa, S. Ananda, K.M. Lokanatha-Rai, R. Dinesh, M. and Yoshimura, Bull. Mater. Sci., 29 (2006) 433–438. https://doi.org/10.1007/BF02914073
S. F. Y. L. Pei Pei Gan, Chemical Engineering Journal, 259 (2013) 351-363. https://doi.org/10.1016/j.cej.2013.06.020
O. H. Meriem Zamouche, Energy Procedia, 18 (2012) 1228-1239. https://doi.org/10.1016/j.egypro.2012.05.138
Y.-J. C. a. C.-C. Lin, Powder Technology, 246 (2013) 137–143. https://doi.org/10.1016/j.powtec.2013.04.033
N. Kashif and F. Ouyang, Journal of Environmental Sciences, 21 (2009) 527-533. https://doi.org/10.1016/S1001-0742(08)62303-7