The effect of hybrid SnO2/r-GO for the photocatalyst of visible light degradation of methylene blue

Authors

  • Le Thi Thanh Thuy Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh
  • Nguyen Thi Le Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh

DOI:

https://doi.org/10.51316/jca.2021.131

Keywords:

SnO2, SnO2/reduced graphene oxide composite, photocatalytic activity, hydrothermal method, methylene blue

Abstract

In this work, we report on hydrothermal synthesis, structure, and photocatalytic properties of tin oxide/reduced graphene oxide (SnO2/r-GO) composites. The prepared photocatalysts were characterized by XRD, FTIR, BET, SEM, Uv Vis and EDX analysis. X-ray diffraction (XRD) patterns of the nanocomposites SnO2/r-GO showed the SnO2 tetragonal structure with the diffraction peaks of rGO phase. The Fourier transform infrared spectroscopy shows the dominance of the absorption peaks of SnO2 component over those of the rGO component. The absorption spectra of the SnO2/r-GO samples showed that the enhanced absorption intensity of visible light with SnO2/r-GO. In addition, photocatalytic efficiency via the degradation of methylene blue of the SnO2/rGO nanocomposites is higher than SnO2 nanoparticles under visible light irradiation. The enhanced photocatalytic activity of SnO2/r-GO can be attributed to vectorial electron transfer process in the continuous network of r-GO, synergistic interaction between r-GO and SnO2, unique double layer characteristics and photosensitization process.

Downloads

Download data is not yet available.

References

H. L. Wang, L. S. Zhang, Z. G. Chen, J. Q. Hu, S.J.Li, Z. H. Wang, J. S. Liu, X. C. Wang, Chem. Soc. Rev. 43 (2014) 5234-5244. https://doi.org/10.1039/c4cs00126e

H. L. Zhou, Y. Q. Qu, T. Zeid, X. F. Duan, Ener. Environ. Sci. 5 (2012) 6732-6743. https://doi.org/10.1039/C2EE03447F

R. Nasser, W. B. H. Othman, H. E. M. Férid, Appl. Sur. Sci. 393 (2017) 486-495. https://doi.org/10.1016/j.apsusc.2016.09.158

H. Pan, Renewable and Sustainable Energy Reviews 57, (2016) 584-601. https://doi.org/10.1016/j.rser.2015.12.117

M. F. Abdel-Messih, M. A. Ahmed, A. S. El-Sayed, J. Photochem. Photobio. A: Chem. 260 (2013) 1-8. https://doi.org/10.1016/j.jphotochem.2013.03.011

X. Chen, F. Liu, B. Liu, L. Tian, W. Hu, Q. Xia, J. Hazard. Mater. 287 (2015) 126-132. https://doi.org/10.1016/j.jhazmat.2015.01.037

W.Guo, L. Huang, Ji. Zhang, Y.He, W. Zeng, Sensors and Actuators B: Chemical 334 (2021) 129666. https://doi.org/10.1016/j.snb.2021.129666

R. Shyamala, L. Gomathi Devi, Chemical Physics Letters 748 (2020) 137385. https://doi.org/10.1016/j.cplett.2020.137385

A. Saini, A. Kumar, V. K. Anand, S. C. Sood, International J. Engin. Trends Technol. 40 (2) (2016) 2231-5381. https://doi.org/10.14445/22315381/IJETT-V40P211

M. Fathy, A. Gomaa, F. A. Taher, M. M. El-Fass, A. El-Hady B. Kashyout, J. Mater. Sci. 51 (2016) 5664–5675. https://doi.org/10.1007/s10853-016-9869-8

M. A. M. Akhira, K. Mohameda, L.H.L.b, S. A. Rezan, Procedia Chem. 19 (2016) 993 – 998. https://doi.org/10.1016/j.proche.2016.03.148

V. T. Pham, H. L. Trung, N. K. Tran, H. C. Manh, H. N. Duc, H. T. T. Quynh, T. H. Pham, Mater. Res.Express 5(9) (2018) 095506. https://doi.org/10.1088/2053-1591/aad6ca

S. J. Rajoba, S. D. Sartale, L. D. Jadhav, Optik 175, (2018) 312-318. https://doi.org/10.1016/j.ijleo.2018.09.018

H. Zhang, J.Feng, T. Fei, S. Liu, T. Zhang, Sensors and Actuators B: Chem. 190 (2014) 472-478. https://doi.org/10.1016/j.snb.2013.08.067

R. Nurzulaikha, H.N. Lim, I. Harrison, S.S. Lim, A. Pandikumar, N.M. Huang, S.P. Lim, G.S.H. Thien, N. Yusoff, I. Ibrahim, Sens. Bio-Sens. Res. 5 (2015) 42-49.

https://doi.org/10.1016/j.sbsr.2015.06.002

M. Mishra, A.P. Singh, B.P. Singh, S.K. Dhawan, RSC Adv. 4 (2014) 25904–25911. https://doi.org/10.1039/C4RA01860E

A. Kumar, L. Rout, R.S. Dhaka, S.L. Samal, P. Dash, RSC Adv. 5 (2015) 39193–39204. https://doi.org/10.1039/C5RA03363B

Published

30-01-2022

Issue

Section

Full Articles

How to Cite

The effect of hybrid SnO2/r-GO for the photocatalyst of visible light degradation of methylene blue. (2022). Vietnam Journal of Catalysis and Adsorption, 10(1S), 344-349. https://doi.org/10.51316/jca.2021.131

Share

Similar Articles

1-10 of 479

You may also start an advanced similarity search for this article.