The effect of hybrid SnO2/r-GO for the photocatalyst of visible light degradation of methylene blue
DOI:
https://doi.org/10.51316/jca.2021.131Keywords:
SnO2, SnO2/reduced graphene oxide composite, photocatalytic activity, hydrothermal method, methylene blueAbstract
In this work, we report on hydrothermal synthesis, structure, and photocatalytic properties of tin oxide/reduced graphene oxide (SnO2/r-GO) composites. The prepared photocatalysts were characterized by XRD, FTIR, BET, SEM, Uv Vis and EDX analysis. X-ray diffraction (XRD) patterns of the nanocomposites SnO2/r-GO showed the SnO2 tetragonal structure with the diffraction peaks of rGO phase. The Fourier transform infrared spectroscopy shows the dominance of the absorption peaks of SnO2 component over those of the rGO component. The absorption spectra of the SnO2/r-GO samples showed that the enhanced absorption intensity of visible light with SnO2/r-GO. In addition, photocatalytic efficiency via the degradation of methylene blue of the SnO2/rGO nanocomposites is higher than SnO2 nanoparticles under visible light irradiation. The enhanced photocatalytic activity of SnO2/r-GO can be attributed to vectorial electron transfer process in the continuous network of r-GO, synergistic interaction between r-GO and SnO2, unique double layer characteristics and photosensitization process.
Downloads
References
H. L. Wang, L. S. Zhang, Z. G. Chen, J. Q. Hu, S.J.Li, Z. H. Wang, J. S. Liu, X. C. Wang, Chem. Soc. Rev. 43 (2014) 5234-5244. https://doi.org/10.1039/c4cs00126e
H. L. Zhou, Y. Q. Qu, T. Zeid, X. F. Duan, Ener. Environ. Sci. 5 (2012) 6732-6743. https://doi.org/10.1039/C2EE03447F
R. Nasser, W. B. H. Othman, H. E. M. Férid, Appl. Sur. Sci. 393 (2017) 486-495. https://doi.org/10.1016/j.apsusc.2016.09.158
H. Pan, Renewable and Sustainable Energy Reviews 57, (2016) 584-601. https://doi.org/10.1016/j.rser.2015.12.117
M. F. Abdel-Messih, M. A. Ahmed, A. S. El-Sayed, J. Photochem. Photobio. A: Chem. 260 (2013) 1-8. https://doi.org/10.1016/j.jphotochem.2013.03.011
X. Chen, F. Liu, B. Liu, L. Tian, W. Hu, Q. Xia, J. Hazard. Mater. 287 (2015) 126-132. https://doi.org/10.1016/j.jhazmat.2015.01.037
W.Guo, L. Huang, Ji. Zhang, Y.He, W. Zeng, Sensors and Actuators B: Chemical 334 (2021) 129666. https://doi.org/10.1016/j.snb.2021.129666
R. Shyamala, L. Gomathi Devi, Chemical Physics Letters 748 (2020) 137385. https://doi.org/10.1016/j.cplett.2020.137385
A. Saini, A. Kumar, V. K. Anand, S. C. Sood, International J. Engin. Trends Technol. 40 (2) (2016) 2231-5381. https://doi.org/10.14445/22315381/IJETT-V40P211
M. Fathy, A. Gomaa, F. A. Taher, M. M. El-Fass, A. El-Hady B. Kashyout, J. Mater. Sci. 51 (2016) 5664–5675. https://doi.org/10.1007/s10853-016-9869-8
M. A. M. Akhira, K. Mohameda, L.H.L.b, S. A. Rezan, Procedia Chem. 19 (2016) 993 – 998. https://doi.org/10.1016/j.proche.2016.03.148
V. T. Pham, H. L. Trung, N. K. Tran, H. C. Manh, H. N. Duc, H. T. T. Quynh, T. H. Pham, Mater. Res.Express 5(9) (2018) 095506. https://doi.org/10.1088/2053-1591/aad6ca
S. J. Rajoba, S. D. Sartale, L. D. Jadhav, Optik 175, (2018) 312-318. https://doi.org/10.1016/j.ijleo.2018.09.018
H. Zhang, J.Feng, T. Fei, S. Liu, T. Zhang, Sensors and Actuators B: Chem. 190 (2014) 472-478. https://doi.org/10.1016/j.snb.2013.08.067
R. Nurzulaikha, H.N. Lim, I. Harrison, S.S. Lim, A. Pandikumar, N.M. Huang, S.P. Lim, G.S.H. Thien, N. Yusoff, I. Ibrahim, Sens. Bio-Sens. Res. 5 (2015) 42-49.
https://doi.org/10.1016/j.sbsr.2015.06.002
M. Mishra, A.P. Singh, B.P. Singh, S.K. Dhawan, RSC Adv. 4 (2014) 25904–25911. https://doi.org/10.1039/C4RA01860E
A. Kumar, L. Rout, R.S. Dhaka, S.L. Samal, P. Dash, RSC Adv. 5 (2015) 39193–39204. https://doi.org/10.1039/C5RA03363B
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.