Synthesis of SnO2/SrTiO3 composite and photocatalytic activity for methylene blue degradation under sunlight

Authors

  • Nguyen Thi Viet Nga Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Do Hoang Chinh Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Tran Thi Thanh Tuyen Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Nguyen Hong Nguyen Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Nguyen Thi Hong Hanh Nguyen Khuyen Highschool - An Khe - Gia Lai Author
  • Hoang Nu Thuy Lien Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Le Thi Thanh Lieu Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Nguyen Van Kim Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author

DOI:

https://doi.org/10.62239/jca.2024.029

Keywords:

SnO2/SrTiO3, photocatalyst, methylene blue, sunlight

Abstract

In this study, the SnO2/SrTiO3 composite has been fabricated by, firstly preparing SnO2 and SrTiO3 through, followed by coupling SnO2 and SrTiO3 by the hydrothermal method at 180 oC for 24 hours. The obtained materials were characterized by X-Ray diffraction (XRD), Fourier transformation infrared spectra (FT-IR), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM). The photocatalytic activity of composite was assessed by degradation of methylene blue in water under sunlight. The composite exhibits a good photocatalytic activity compared to individual components (SnO2 and SrTiO3). An enhancement in photocatalytic activity of the composite with the presence of SnO2 has been observed. 1,4-benzoquinone (BQ) và tert-butyl alcohol (TBA) were used as quenchers for trapping photogenerated superoxide radical anions (O2-) and hydroxyl radicals (OH), respectively. In the presence of the quenchers, the photocatalytic activity of the composite has decreased significantly.

Downloads

Download data is not yet available.

References

T. Robinson, G. McMullan, R. Marchant and P. Nigam, Bioresource Technology, 77 (2001) 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8

J. Wang, H. Fan and H. Yu, Journal of Nanomaterials, 2015 (2015) 1–8. https://doi.org/10.1155/2015/395483

W. Chen, Q. Zhou, F. Wan, and T. Gao, Journal of Nanomaterials, 2012 (2012) 1–9. https://doi.org/10.1155/2012/612420

S.P. Kim, M.Y. Choi, H.C. Choi, Materials Research Bulletin, 74 (2016) 85–89. https://doi.org/10.1016/j.materresbull. 2015.10.024

D. Hou, X. Hu, W. Ho, P. Hub and Y. Huang, Journal of Materials Chemistry A, 3 (2015) 3935–3943. https://doi.org/10.1039/C4TA05485G

N. Selvi, S. Sankar, K. Dinakaran, Superlattices and Microstructures, 76 (2014) 277–287. https://doi.org/10.1016/j.spmi.2014.10.015

W. Wan, Y. Li, X. Ren, Y. Zhao, F. Gao and H. Zhao, Nanomaterials, 8 (2018) 112. https://doi.org/10.3390/nano8020112

S. Zhan, D. Li, S. Liang, X. Chen and X. Li, Sensors, 13 (2013) 4378–4389. https://doi.org/10.3390/s130404378

P.S. Konstas, I. Konstantinou, D. Petrakis andT . Albanis, Catalysts, 8 (2018) 554. https://doi.org/10.3390/catal8110554

A.M. Youssef, H.K. Farag, A.A. El-Kheshen, F. F. Hammad, Silicon, 10 (2018) 1225–1230. https://doi.org/10.1007/s12633-017-9596-z

C.C. Chen, C.S. Lu, Y.C. Chung, J.L. Jan, Journal of Hazardous Materials, 141 (2007) 520-528. https://doi.org/10.1016/j.jhazmat.2006.07.011

Y.P. Ong, L.N. Ho, S.A. Ong, J. Banjuraizah, A.H. Ibrahim, S.L. Lee, N. Nordin, Chemosphere, 219 (2019) 277-285. https://doi.org/10.1016/j.chemosphere.2018.12.004

Published

30-06-2024

Issue

Section

Full Articles

How to Cite

Synthesis of SnO2/SrTiO3 composite and photocatalytic activity for methylene blue degradation under sunlight. (2024). Vietnam Journal of Catalysis and Adsorption, 12(2), 43-48. https://doi.org/10.62239/jca.2024.029

Share

Most read articles by the same author(s)

Similar Articles

1-10 of 101

You may also start an advanced similarity search for this article.