Synthesis of C/g-C3N4 composite with enhanced photocatalytic activity under visible light

Authors

  • Nguyen Thi Lan Faculty of Natural Sciences, Quy Nhon University Author
  • Phan Thi Thuy Trang Faculty of Natural Sciences, Quy Nhon University Author
  • Tran Huu Ha Faculty of Natural Sciences, Quy Nhon University Author
  • Nguyen Thi Thanh Huong Faculty of Natural Sciences, Quy Nhon University Author
  • Nguyen Van Kim Faculty of Natural Sciences, Quy Nhon University Author
  • Nguyen Van Thang Faculty of Natural Sciences, Quy Nhon University Author
  • Vo Vien Faculty of Natural Sciences, Quy Nhon University Author

DOI:

https://doi.org/10.51316/jca.2022.068

Keywords:

rhodamine B

Abstract

In this study, banana-peel-derived carbon/g-C3N4 (BC/CN) composite was prepared by a facile calcinating method from the urea (NH2)2CO and banana-peel-derived carbon (BC) precursors. Whereas, the banana-peel-derived carbon was prepared from the waste banana peel as biomass source. The obtained composite was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), and N2 adsorption–desorption isotherms. The results showed that the BC/CN composite had the higher photocatalytic activities in the degradation Rhodamine B (85%) compared to the pristine g-C3N4 (31%) under visible light. This shows that the BC/CN composite as a promising new material with low cost for photodegradation of organic pollutants in wastewater.

Downloads

Download data is not yet available.

References

Andreozzi, R., Caprio, V., Insola, A. and Marotta, R., Catalysis Today 53 (1999) 51-59. https://doi.org/10.1016/S0920-5861(99)00102-9

G. Mamba, A.K. Mishra, Appl. Catal. B 198 (2016) 347–377. https://doi.org/10.1016/j.apcatb.2016.05.052

D. Mohanta, A. Mahanta, S. R. Mishra, Sk. Jasimuddin, Md. Ahmaruzzaman, Environ. Res. 197 (2021) 111077. https://doi.org/10.1016/j.envres.2021.111077

P. Yang, H. Ou, Y. Fang, X. Wang, Angew. Chem. 129 (2017) 4050–4054. https://doi.org/10.1002/anie.201700286

S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27 (2015) 2150–2176. https://doi.org/10.1002/adma.201500033

Y. Deng, J. Liu, Y. Huang, M. Ma, K.Liu, X. Dou, Z. Wang, S. Qu, and Z. Wang, Adv. Funct. Mater. (2020) 2002353. https://doi.org/10.1002/adfm.202002353

I.Velo-Gala, J.J.López-Peñalver, M. Sánchez-Polo, J.Rivera-Utrilla, Applied Catalysis B: Environmental. 142-143 (2013) 694-704. https://doi.org/10.1016/j.apcatb.2013.06.003

H. Xiao, W. Wang, G. Liu, Z. Chen, K. L, J. Zhu, Appl. Surf. Sci. 358 (2015) 313-318. https://doi.org/10.1016/j.apsusc.2015.07.213

A. Chafidz1, W. Astuti, D. Hartanto, Aulia S. Mutia, P. R. Sari, MATEC Web of Conferences 154 (2018) 01021. https://10.1051/matecconf/201815401021

E. S. Ngankam, L. Dai-Yang, B. Debina, A. Baçaoui, A. Yaacoubi, A. N. Rahman, Materials Sciences and Applications 11 (2020) 382-400. https//:10.4236/msa.2020.116026

J. Zhang, H. Tong, W. Pei, W. Liu, F. Shi, Y. Li, Y. Huo, Chemosphere 270 (2021) 129424. https://doi.org/10.1016/j.chemosphere.2020.129424

H. Zhang, J. Niu, Y. Guo, F. Cheng, Fuel (2021) 287. https://doi.org/10.1016/j.fuel.2020.119481

T. Van Thuan, B.T.P. Quynh, T.D. Nguyen, V.T.T. Ho, L.G. Bach, Surf. Interfaces 6 (2017) 209-217. https://doi.org/10.1016/j.surfin.2016.10.007

Md. R. Islam, A. K. Chakraborty, M. A. Gafur, Md. A. Rahman, Md. H. Rahman, Research on Chemical Intermediates 45 (2019) 1753-1773. https://doi.org/10.1007/s11164-018-3703-7

X. Chen, Dong-Hau Kuo, D. Lu, RSC Advances, (2016) 1-31. https://doi.org/10.1039/C6RA10357J

S. Ahmadi, H. Ganjidoust, Journal of Environmental Chemical Engineering 9 (2021) 106010. https://doi.org/10.1016/j.jece.2021.106010

S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25 (2009) 10397-10401. https://doi.org/10.1021/la900923z

P. Martín-Ramos, J. Martín-Gil, R.C. Dante, F. Vaquero, R.M. Navarro, J.L.G. Fierro, Int. J. Hydrogen Energy 40 (2015) 7273–7281. https://doi.org/10.1016/j.ijhydene.2015.04.063

Q.J. Xiang, J.G. Yu, M. Jaroniec, J. Phys. Chem. C. 115 (2011) 7355–7363. https://doi.org/10.1021/jp200953k

Y.L. Chen, J.H. Li, Z.H. Hong, B. Shen, B.Z. Lin, B.F. Gao, Phys. Chem. Chem. Phys. 16 (2014) 8106–8113. https://doi.org/10.1039/C3CP55191A

S.M. Lyth, Y. Nabae, S. Moriya, S. Kuroki, M. Kakimoto, J. Ozaki, S. Miyata, J. Phys. Chem. C. 113 (2009) 20148–20151. https://doi.org/10.1021/jp907928j

H. Wang, X. Zhang, J. Xie, J. Zhang, P. Ma, B. Pan and Y. Xie, Nanoscale 7 (2015) 5152-5156. https://doi.org/10.1039/C4NR07645A

K. Sathish- Kumar, G. Vázquez-Huerta, A. Rodríguez-Castellanos, H. M. Poggi-Varaldo, O. Solorza-Feria, Int. J. Electrochem. Sci. 7 (2012) 5484–5494. http://www.electrochemsci.org/list12.htm#issue7

Thillai Sivakumar Natarajan, Kalithasan Natarajan, Hari C. Bajaj, Rajesh J. Tayade, J Nanopart Res. 15 (2013) 1-18. https://10.1007/s11051-013-1669-3

X. Zhou, J. Lu, J. Jiang, X. Li, M. Lu, G. Yuan, Z. Wang, M. Zheng and H. J. Seo, Nanoscale Research Letters. 9 (2014) 1-7. https://doi.org/10.1186/1556-276X-9-34

D. Saha, M. M. Desipio, T. J. Hoinkis, E. J. Smeltz, R. Thorpe, D. K. Hensley, S. G. Fischer-Drowos, J. Chen, Journal of Environmental Chemical Engineering 6 (2018) 4927 - 4936. https://doi.org/10.1016/j.jece.2018.07.030

Y. Cui, Z. Ding, P. Liu, M. Antonietti, X. Fu. X. Wang, Phys Chem Chem Phys. 14 (2012) 1455-1462. https://doi.org/10.1039/C41CP22820J

Published

31-12-2022

Issue

Section

Full Articles

How to Cite

Synthesis of C/g-C3N4 composite with enhanced photocatalytic activity under visible light. (2022). Vietnam Journal of Catalysis and Adsorption, 11(4), 44-49. https://doi.org/10.51316/jca.2022.068

Share

Funding data

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1-10 of 28

You may also start an advanced similarity search for this article.