Synthesis of C/g-C3N4 composite with enhanced photocatalytic activity under visible light
DOI:
https://doi.org/10.51316/jca.2022.068Keywords:
rhodamine BAbstract
In this study, banana-peel-derived carbon/g-C3N4 (BC/CN) composite was prepared by a facile calcinating method from the urea (NH2)2CO and banana-peel-derived carbon (BC) precursors. Whereas, the banana-peel-derived carbon was prepared from the waste banana peel as biomass source. The obtained composite was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), and N2 adsorption–desorption isotherms. The results showed that the BC/CN composite had the higher photocatalytic activities in the degradation Rhodamine B (85%) compared to the pristine g-C3N4 (31%) under visible light. This shows that the BC/CN composite as a promising new material with low cost for photodegradation of organic pollutants in wastewater.
Downloads
References
Andreozzi, R., Caprio, V., Insola, A. and Marotta, R., Catalysis Today 53 (1999) 51-59. https://doi.org/10.1016/S0920-5861(99)00102-9
G. Mamba, A.K. Mishra, Appl. Catal. B 198 (2016) 347–377. https://doi.org/10.1016/j.apcatb.2016.05.052
D. Mohanta, A. Mahanta, S. R. Mishra, Sk. Jasimuddin, Md. Ahmaruzzaman, Environ. Res. 197 (2021) 111077. https://doi.org/10.1016/j.envres.2021.111077
P. Yang, H. Ou, Y. Fang, X. Wang, Angew. Chem. 129 (2017) 4050–4054. https://doi.org/10.1002/anie.201700286
S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27 (2015) 2150–2176. https://doi.org/10.1002/adma.201500033
Y. Deng, J. Liu, Y. Huang, M. Ma, K.Liu, X. Dou, Z. Wang, S. Qu, and Z. Wang, Adv. Funct. Mater. (2020) 2002353. https://doi.org/10.1002/adfm.202002353
I.Velo-Gala, J.J.López-Peñalver, M. Sánchez-Polo, J.Rivera-Utrilla, Applied Catalysis B: Environmental. 142-143 (2013) 694-704. https://doi.org/10.1016/j.apcatb.2013.06.003
H. Xiao, W. Wang, G. Liu, Z. Chen, K. L, J. Zhu, Appl. Surf. Sci. 358 (2015) 313-318. https://doi.org/10.1016/j.apsusc.2015.07.213
A. Chafidz1, W. Astuti, D. Hartanto, Aulia S. Mutia, P. R. Sari, MATEC Web of Conferences 154 (2018) 01021. https://10.1051/matecconf/201815401021
E. S. Ngankam, L. Dai-Yang, B. Debina, A. Baçaoui, A. Yaacoubi, A. N. Rahman, Materials Sciences and Applications 11 (2020) 382-400. https//:10.4236/msa.2020.116026
J. Zhang, H. Tong, W. Pei, W. Liu, F. Shi, Y. Li, Y. Huo, Chemosphere 270 (2021) 129424. https://doi.org/10.1016/j.chemosphere.2020.129424
H. Zhang, J. Niu, Y. Guo, F. Cheng, Fuel (2021) 287. https://doi.org/10.1016/j.fuel.2020.119481
T. Van Thuan, B.T.P. Quynh, T.D. Nguyen, V.T.T. Ho, L.G. Bach, Surf. Interfaces 6 (2017) 209-217. https://doi.org/10.1016/j.surfin.2016.10.007
Md. R. Islam, A. K. Chakraborty, M. A. Gafur, Md. A. Rahman, Md. H. Rahman, Research on Chemical Intermediates 45 (2019) 1753-1773. https://doi.org/10.1007/s11164-018-3703-7
X. Chen, Dong-Hau Kuo, D. Lu, RSC Advances, (2016) 1-31. https://doi.org/10.1039/C6RA10357J
S. Ahmadi, H. Ganjidoust, Journal of Environmental Chemical Engineering 9 (2021) 106010. https://doi.org/10.1016/j.jece.2021.106010
S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25 (2009) 10397-10401. https://doi.org/10.1021/la900923z
P. Martín-Ramos, J. Martín-Gil, R.C. Dante, F. Vaquero, R.M. Navarro, J.L.G. Fierro, Int. J. Hydrogen Energy 40 (2015) 7273–7281. https://doi.org/10.1016/j.ijhydene.2015.04.063
Q.J. Xiang, J.G. Yu, M. Jaroniec, J. Phys. Chem. C. 115 (2011) 7355–7363. https://doi.org/10.1021/jp200953k
Y.L. Chen, J.H. Li, Z.H. Hong, B. Shen, B.Z. Lin, B.F. Gao, Phys. Chem. Chem. Phys. 16 (2014) 8106–8113. https://doi.org/10.1039/C3CP55191A
S.M. Lyth, Y. Nabae, S. Moriya, S. Kuroki, M. Kakimoto, J. Ozaki, S. Miyata, J. Phys. Chem. C. 113 (2009) 20148–20151. https://doi.org/10.1021/jp907928j
H. Wang, X. Zhang, J. Xie, J. Zhang, P. Ma, B. Pan and Y. Xie, Nanoscale 7 (2015) 5152-5156. https://doi.org/10.1039/C4NR07645A
K. Sathish- Kumar, G. Vázquez-Huerta, A. Rodríguez-Castellanos, H. M. Poggi-Varaldo, O. Solorza-Feria, Int. J. Electrochem. Sci. 7 (2012) 5484–5494. http://www.electrochemsci.org/list12.htm#issue7
Thillai Sivakumar Natarajan, Kalithasan Natarajan, Hari C. Bajaj, Rajesh J. Tayade, J Nanopart Res. 15 (2013) 1-18. https://10.1007/s11051-013-1669-3
X. Zhou, J. Lu, J. Jiang, X. Li, M. Lu, G. Yuan, Z. Wang, M. Zheng and H. J. Seo, Nanoscale Research Letters. 9 (2014) 1-7. https://doi.org/10.1186/1556-276X-9-34
D. Saha, M. M. Desipio, T. J. Hoinkis, E. J. Smeltz, R. Thorpe, D. K. Hensley, S. G. Fischer-Drowos, J. Chen, Journal of Environmental Chemical Engineering 6 (2018) 4927 - 4936. https://doi.org/10.1016/j.jece.2018.07.030
Y. Cui, Z. Ding, P. Liu, M. Antonietti, X. Fu. X. Wang, Phys Chem Chem Phys. 14 (2012) 1455-1462. https://doi.org/10.1039/C41CP22820J
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2021-DQN-04