Nickel ferrite/graphene oxide material: synthesis and photocatalytic degradation study of Rhodamine B
DOI:
https://doi.org/10.51316/jca.2023.047Keywords:
Nickel ferrite, graphene oxide, photocatalyst, Rhodamine BAbstract
In this work, a simple approach was taken to prepare a nickel ferrite based on graphene oxide magnetic photocatalyst (NF/GO). The NF/GO composite was synthesized by a one-step hydrothermal method and characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray elemental mapping analysis (EDX-Mapping), vibrating sample magnetometer (VSM) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The research results showed that the photocatalytic degradation of the Rhodamine B (RhB) by visible light radiation occurs more efficiently when there was a combination of NiFe2O4 nanoparticles with graphene oxide sheets compared individual component materials.
Downloads
References
A. I. Borhan, P. Samoila, V. Hulea, A. R. Iordan, and M. N. Palamaru, J. Photochem. Photobiol. A Chem. 279 (2014) 17-23. https://doi.org/10.1016/j.jphotochem.2014.01.010
P. Nuengmatcha, S. Chanthai, R. Mahachai, and W. C. Oh, J. Environ. Chem. Eng. 4 (2016) 2170-2177. https://doi.org/10.1016/j.jece.2016.03.045
Z. Zhang, S. Zhai, M. Wang, H. Ji, L. He, C. Ye, C. Wang, S. Fang, and H. Zhang, J. Alloys Compd. 659 (2016) 101-111. https://doi.org/10.1016/j.jallcom.2015.11.027
B. Cuiping, X. Xianfeng, G. Wenqi, F. Dexin, X. Mo, G. Zhongxue, and X. Nian, Desalination 278 (2011) 84-90. https://doi.org/10.1016/j.desal.2011.05.009
L. Du, J. Wu, and C. Hu, Electrochim. Acta 68 (2012) 69-73. https://doi.org/10.1016/j.electacta.2012.02.030
M. F. Hou, L. Liao, W. De Zhang, X. Y. Tang, H. F. Wan, and G. C. Yin, Chemosphere 83 (2011) 1279-1283. https://doi.org/10.1016/j.chemosphere.2011.03.005
C. M. Magdalane, K. Kaviyarasu, J. J. Vijaya, B. Siddhardha, and B. Jeyaraj, J. Photochem. Photobiol. B Biol. 163 (2016) 77-86. https://doi.org/10.1016/j.jphotobiol.2016.08.013
X. Guo, H. Zhu, and Q. Li, Appl. Catal. B Environ. 160–161 (2014) 408-414. https://doi.org/10.1016/j.apcatb.2014.05.047
Y. A. J. Al-Hamadani, G. Lee, S. Kim, C. M. Park, M. Jang, N. Her, J. Han, D. H. Kim, and Y. Yoon, Chemosphere 205 (2018) 719-727. https://doi.org/https://doi.org/10.1016/j.chemosphere.2018.04.129
D. G. Goodwin, A. S. Adeleye, L. Sung, K. T. Ho, R. M. Burgess, and E. J. Petersen, Environ. Sci. Technol. 52 (2018) 4491-4513. https://doi.org/10.1021/acs.est.7b04938
H. Yi, D. Huang, L. Qin, G. Zeng, C. Lai, M. Cheng, S. Ye, B. Song, X. Ren, and X. Guo, Appl. Catal. B Environ. 239 (2018) 408-424. https://doi.org/10.1016/j.apcatb.2018.07.068
X. Deng, L. Lü, H. Li, and F. Luo, J. Hazard. Mater. 183 (2010) 923-930. https://doi.org/10.1016/j.jhazmat.2010.07.117
R. Dom, R. Subasri, K. Radha, and P. H. Borse, Solid State Commun. 151 (2011) 470-473. https://doi.org/10.1016/j.ssc.2010.12.034
D. C. Marcano, D. V Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano 4 (2010) 4806–4814. https://doi.org/10.1021/nn1006368
R. Tabit, O. Amadine, Y. Essamlali, K. Dânoun, A. Rhihil, and M. Zahouily, RSC Adv. 8 (2018) 1351–1360. https://doi.org/10.1039/c7ra09949e
P. Khorshidi, R. H. S. M. Shirazi, M. Miralinaghi, E. Moniri, and S. Saadi, Res. Chem. Intermed. 46 (2020) 3607–3627. https://doi: 10.1007/s11164-020-04164-1
R. A. Rochman, S. Wahyuningsih, A. H. Ramelan, and Q. A. Hanif, in IOP Conference Series: Materials Science and Engineering 509 (2019) 12119. https://doi: 10.1088/1757-899X/509/1/012119
M. Salavati-Niasari, F. Davar, and T. Mahmoudi, Polyhedron 28 (2009) 1455–1458. https://doi: 10.1016/j.poly.2009.03.020
M. Mouallem-Bahout, S. Bertrand, and O. Peña, J. Solid State Chem. 178 (2005) 1080–1086. https://doi: 10.1016/j.jssc.2005.01.009
K. Krishnamoorthy, Sci. Adv. Mater. 5 (2013) 406-410. https://doi.org/10.1166/sam.2013.1471
21. A. Ahlawat and V. G. Sathe, J. Raman Spectrosc. 42 (2011) 1087–1094. https://doi.org/10.1002/jrs.2791
R. Sankaranarayanan, S. Shailajha, M. S. K. Mubina, and C. P. Anilkumar, J. Supercond. Nov. Magn. 33 (2020) 3631–3642. https://doi.org/10.1007/s10948-020-05617-9
I. Chakraborty, D. Mitra, and S. P. Moulik, J. Nanoparticle Res. 7 (2005) 227–236. https://doi.org/10.1007/s11051-005-4270-6
Y. Xia, Z. He, J. Su, B. Tang, K. Hu, Y. Lu, S. Sun, and X. Li, RSC Adv. 8 (2018) 4284–4294. https://doi.org/10.1039/c7ra12546a
C. Singh, A. Goyal, and S. Singhal, Nanoscale 6 (2014) 7959–7970. https://doi.org/10.1039/c4nr01730g
H. Moussa, E. Girot, K. Mozet, H. Alem, G. Medjahdi, and R. Schneider, Appl. Catal. B Environ. 185 (2016) 11-21. https://doi.org/10.1016/j.apcatb.2015.12.007
J. Liang, Y. Wei, J. Zhang, Y. Yao, G. He, B. Tang, and H. Chen, Ind. Eng. Chem. Res. 57 (2018) 4311–4319. https://doi.org/10.1021/acs.iecr.8b00218
R. Dulyasucharit, S. Wongkasemjit, S. Nanan, O. Intharaksa, and C. Masingboon, J. Solid State Chem. 319 (2023) 123784. https://doi: 10.1016/j.jssc.2022.123784
T. S. Saleh, A. K. Badawi, and R. S. Salama, Materials. 16 (2023) 2170. https://doi.org/10.3390/ma16062170
Y. Li et al., Appl. Catal. B Environ. 190 (2016) 1–11. https://doi:10.1016/j.apcatb.2016.02.054
S. Tanwar, A. Sharma, and D. Mathur, Appl. Phys. A Mater. Sci. Process. 128 (2022) 1–10. https://doi: 10.1007/s00339-022-05468-2