Study on microwave synthesis of MOF-199/TiO2 for photocatalytic degradation of organic dyes
DOI:
https://doi.org/10.62239/jca.2024.084Keywords:
Metal-organic framework, photocatalyst, photedegradation, microwave method, organic dyesAbstract
In this study, we synthesized TiO2 nanoparticles from titanium slag, and 1,3,5-copper benzene tricarboxylate (MOF-199), MOF-199/TiO2 composites using the microwave method. The synthesized materials were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy-energy (SEM), Brunauer–Emmett–Teller (BET) surface area using N2 adsorption/desorption isotherm methods, and UV–Vis diffusive reflectance spectra. MOF-199 exhibited octahedra morphology and showed a surface area of 1059.366 m2/g. The photocatalytic activity of the obtained materials was examined for Rhodamine B (RhB) degradation under visible light irradiation. The results showed that MOF-199/TiO2 had higher photocatalytic activity under visible light than both TiO2 and MOF-199.
Downloads
References
Desore, A. and S.A. Narula, Development and Sustainability (2018) 1439–1459. https://doi.org/10.1007/s10668-017-9949-1
Mbu, E.E., et al., 10th Int'l Conference on Advances in Science, Engineering, Technology & Healthcare (2018). https://doi.org/10.17758/EARES4.EAP1118210
Küsgens, P., et al., Microporous Mesoporous Materials (2009) 325–330. https://doi.org/10.1016/j.micromeso.2008.11.020
Samuel, M.S., et al., Journal of Photochemistry Photobiology B: Biology (2020) 112011. https://doi.org/10.1016/j.jphotobiol.2020.112011
Van Tran, C., et al., Journal of hazardous materials (2021) 126636. https://doi.org/10.1016/j.jhazmat.2021.126636
Chen, L., et al., Nanoscale Advances (2020) 2628–2647. https://doi.org/10.1039/D0NA00184H
Xiaobo, M, Environmental Technology (2021) 4134–4144. https://doi.org/10.1080/09593330.2020.1745295
Mahmoodi, N.M. J. Abdi, Microchemical Journal (2019), 436–442. https://doi.org/10.1016/j.microc.2018.09.033
Garg, D., et al., Journal of Fluorescence (2022) 1171–1188. https://doi.org/10.1007/s10895-022-02902-9
Jiang, Y., et al., Nano Research (2017) 876–889. https://doi.org/10.1007/s12274-016-1341-1
Minh, T.T. and T.V. Thien, Hue University Journal of Science: Natural Science (2017) 107–116. https://doi.org/10.26459/hueuni-jns.v126i1C.4455
Tsai, C.-K., et al., Nanomaterials (2023) 282. https://doi.org/10.3390/nano13020282
Samuel, M.S., K.V. Savunthari, and S. Ethiraj, S, Environmental Science Pollution Research (2021) 40835–40843. https://doi.org/10.1007/s11356-021-13571-9
Wang, H., et al., Industrial Engineering Chemistry Research (2016) 8096–8103. https://doi.org/10.1021/acs.iecr.6b01400
Van, C.T., et al., Vietnam Journal of Catalysis Adsorption (2022) 88–92. https://doi.org/10.51316/jca.2022.013
Huang, K., et al., RSC Advances (2015) 32795–32803. https://doi.org/10.1039/C5RA01707F
Rajakumar, G., et al., Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy (2012) 23–29. https://doi.org/10.1016/j.saa.2012.01.011
León, A., et al., Applied Sciences (2017) 49. https://doi.org/10.3390/app7010049
Hao, Z., et al., Polymers (2022) 1847. https://doi.org/10.3390/polym14091847
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.