Preparation, characterization, and photocatalytic activity of g-C3N4/SrTiO3 composite
DOI:
https://doi.org/10.51316/jca.2023.005Keywords:
g-C3N4/SrTiO3, photocatalyst, methylene blue, visible lightAbstract
The g-C3N4/SrTiO3 composite was hydrothermally synthesized at 150 oC for 12 hours from a dispersed mixture of g-C3N4 and SrTiO3 in water, in which SrTiO3 was hydrothermally synthesized at 150 oC for 12 hours using strontium nitrate, propan-2-ol, titanium tetrachloride and sodium hydroxide as precursors without assistance of any surfactant; and g-C3N4 was prepared by pyrolysis of melamine at 520 oC. The properties of materials were characterized by various techniques such as X-ray diffraction (XRD), infrared spectra (IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS). The photocatalytic activity of materials was assessed by degradation of methylene blue (MB) under visible light. The enhancement of photocatalytic activity of the g-C3N4/SrTiO3 composite compared to single components g-C3N4 and SrTiO3 was observed.
Downloads
References
A. Bhalla, R. Guo and R. Roy, Mater. Res. Innovations 4 (2000) 3–26. https://doi.org/10.1007/s100190000062
M. Pena and J. Fierro, Chem. Rev. 101 (2001) 1981–2018. https://doi.org/10.1021/cr980129f
B. Jalan, R. Engel-Herbert, T. E. Mates and S. Stemmer, Appl. Phys. Lett. 93 (2008) 052907. https://doi.org/10.1063/1.2969037
H. Kato and A. Kudo, J. Phys. Chem. B 106 (2002) 5029–5034. https://doi.org/10.1021/jp0255482
F. Wagner and G. Somorjai, Nature 285 (1980) 559–560. https://doi.org/10.1038/285559a0
S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono and K. Koumoto, Appl. Phys. Lett. 87 (2005) 092108. https://doi.org/10.1063/1.2035889
H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara and M. Hirano, H. Hosono, K. Koumoto, Nat. Mater. 6 (2007) 129–134.
https://doi.org/10.1038/nmat1821
X. Fan, Y. Wang, X. Chen, L. Gao, W. Luo, Y. Yuan, Z. Li, T. Yu, J. Zhu and Z. Zou, Chem. Mater. 22 (2010) 1276–1278. https://doi.org/10.1021/cm903303v
J. Huang, R. Ma, Y. Ebina, K. Fukuda, K. Takada and T. Sasaki, Chem. Mater. 22 (2010) 2582–2587. https://doi.org/10.1021/cm903733s
M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg and B. P. Andreasson, Adv. Mater. 19 (2007) 2232–2235. https://doi.org/10.1002/adma.200602915
H. Irie, Y. Maruyama and K. Hashimoto, J. Phys. Chem. C 111 (2007) 1847–1852. https://doi.org/10.1021/jp066591i
J. Yang, D. Wang, H. Han and C. Li, Acc. Chem. Res. 46 (2013) 1900–1909. https://doi.org/10.1021/ar300227e
L. Mei, H. Zhao and B. Lu, Adv. Sci. 2 (2015) 1500116. https://doi.org/10.1002/advs.201500116
Feiyu Xiao, Jinmei Xu, Lili Cao, Shanqing Jiang, Qiuya Zhang & Liping Wang, Environ Sci Pollut Res Int 27(6) (2020) 5788–5796. https://doi.org/10.1007/s11356-019-07060-3
Panagiotis-Spyridon Konstas, Ioannis Konstantinou, Dimitrios Petrakis and Triantafyllos Albanis, Catalysts 8 (2018) 554. https://doi.org/10.3390/catal8110554
Meiriele Antunes Ferreira, Gelson T.S.T.da Silva, Osmando F.Lopes, Valmor R.Mastelaro, Caue Ribeiro, Manoel J.M.Pires, Andréa R.Malagutti, WaldirAvansiJr, Henrique A.J.L.Mourão, Materials Science in Semiconductor Processing 108 (2020) 104887. https://doi.org/10.1016/j.mssp.2019.104887
Nguyen Van Kim, Nguyen Thi Viet Nga, Vo Vien, Viet Nam Journal of Catalysis and Adsorption 6 (2017) 84-88.
Nguyễn Nhật Lê, Trần Châu Giang, Hoàng Nữ Thùy Liên, Nguyễn Thị Lan, Huỳnh Thị Minh Thành, Nguyễn Thị Việt Nga, Nguyễn Văn Kim, Vietnam J. Chem. 58(5E12) 2020 136-142.
Hou D.F., Hu X.L., Ho W.K., Hu P., Huang Y.H., J. Mater. Chem. A, 3, (2015) , 3935–3943. https://doi.org/10.1039/C4TA05485G
Lehuta, K.A.; Kittilstved, K.R., J. Mater. Chem. A 2 (2014) 6138–6145. https://doi.org/10.1039/C3TA14475E
S. C. Yan, Z. S, Langmuir, 24(17) (2009) 10397–10401. https://doi.org/10.1021/la900923z
Gang Xin, Yali Meng, Journal of Chemistry, 2013 (2013) 1-5. https://doi.org/10.1155/2013/187912
Santosh Kumar, Surendar Tonda, Arabinda Baruah, Bharat Kumarb, Vishnu Shanker, Dalton Trans, 43, (2014), 16105 – 16114. https://doi.org/10.1039/C4DT01076K
Minsik Kim, Sohee Hwang and Jong-Sung Yu, Journal of Materials Chemistry 17(17) (2007) 1656–1659. https://doi.org/10.1039/B702213A
Li, X., Zhang, J., Shen, L., Ma, Y., Lei, W., Cui, Q., Zou, G, Applied Physics A 94(2) (2009) 387–392. https://doi.org/10.1007/s00339-008-4816-4
A. M. Youssef, H. K. Farag, A. El-Kheshen, F. F. Hammad, Silicon 10 (2018) 1225–1230. https://doi.org/10.1007/s12633-017-9596-z
Taiping Xie, Yuan Wang, Chenglun Liu and Longjun Xu, Materials (Basel) 11 (2018) 646. https://doi.org/10.3390/ma11040646
Friedmann Donia, Mendive Cecilia, and Bahnemann Detlef, Applied Catalysis B: Environmental 99(3–4) (2010) 398–406. https://doi.org/10.1016/j.apcatb.2010.05.014
J. H. Castillo-Ledezma, J. L. Sánchez Salas, A. López-Malo, E. R. Bandala, European Food Research and Technology 233(5) (2011) 825-834. https://doi.org/10.1007/s00217-011-1579-5
Marwah J. Kadhim, M.A. Mahdi, J.J. Hassan, Materials International 2(2) (2020) 64-72. https://doi.org/10.33263/Materials21.064072
C.C. Chen, C.S. Lu, Y.C. Chungb, J.L. Jan, J. Hazard. Mater., 141, (2007), 520–528. https://doi.org/10.1016/j.jhazmat.2006.07.011
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2021-DQN-05