Synthesis and photocatalytic activity of g-C3N4/CdS materials under visible light

Authors

  • Nguyen Thi Viet Nga Faculty of Education, Quy Nhon University Author
  • Tran Ngoc Thien Truong Faculty of Natural Sciences, Quy Nhon University Author
  • Nguyen Van Luong Faculty of Natural Sciences, Quy Nhon University Author
  • Hoang Nu Thuy Lien Faculty of Natural Sciences, Quy Nhon University Author
  • Nguyen Van Kim Faculty of Natural Sciences, Quy Nhon University Author

DOI:

https://doi.org/10.51316/jca.2022.067

Keywords:

g-C3N4/CdS, photocatalyst, methylene blue, visible light

Abstract

The g-C3N4/CdS composite photocatalysts consisting of cadmium sulfide (CdS) and graphitic carbon nitride g-C3N4) with a different mass ratio of CdS were successfully prepared and denoted as CNCS-1:1, CNCS-1:3, CNCS-1:5. The obtained materials were characterized by X-Ray diffraction (XRD), infrared spectra (IR), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The UV-vis DRS results showed that CNCS-1:1, CNCS-1:3 and CNCS-1:5 materials possess bandgap of around 2.31, 2.25 and 2.28 eV, respectively. The photocatalytic activity of the materials was assessed by degradation of methylene blue (MB) under visible light. Among the three materials, CNCS-1:3 exhibited the highest photocatalytic activity. The enhancement of photocatalytic activity of the CNCS-1:3 (or g-C3N4/CdS) composites compared to single components, g-C3N4 and CdS was observed, which can be attributed to the reduction of combination rate of photogenerated electron – hole pairs in the composites.

Downloads

Download data is not yet available.

References

L. Huang, R. Gao, L. Xiong, P. Devaraji, W. Chen, X. Li and Li. Mao, RSC Adv., 11, (2021), 12153–12161. https://doi.org/10.1039/D1RA00625H

K. Adachi, K. Ohta, T. Mizuno, S. Energy, 53, (1994), 187–190. https://doi.org/10.1016/0038-092X(94)90480-4

S. Wua, H. Hu, Y. Lin, J. Zhang, Y. H. Hu, Chemical Engineering Journal, 382, (2020), 122842. https://doi.org/10.1016/j.cej.2019.122842

E.S. Elmolla, M. Chaudhuri, Desalination, 252, (2010), 1–3, 46–52. https://doi.org/10.1016/j.desal.2009.11.003

K. Zhang and L. Guo, Catal. Sci. Technol., 3, (2013), 1672–1690. https://doi.org/10.1039/C3CY00018D

Q. Wang, J. Li, Y. Bai, J. Lian, H. Huang, Z. Li, Z. Lei and W. Shangguan, Green Chem., 16, (2014), 2728–2735. https://doi.org/10.1039/C3GC42466A

Y.B. Shao, L.H. Wang and J.H. Huang, RSC Adv., 6, (2016), 84493–84499. https://doi.org/10.1039/C6RA17046C

Y.C. Zhang, J. Li, M. Zhang and D.D. Dionysiou, Environ. Sci. Technol. 45, (2011), 9324–9331. https://doi.org/10.1021/es202012b

W. Wu, R. Lin, L. Shen, R. Liang, R. Yuan and L. Wu, Phys. Chem. Chem. Phys., 15, (2013), 19422–19426. https://doi.org/10.1039/C3CP53195C

M. Imran, M. Ikram, A. Shahzadi, S. Dilpazir, H. Khan, I. Shahzadi, S. Amber Yousaf, S. Ali, J. Geng and Y, RSC Adv., 8, (2018), 18051–18058. https://doi.org/10.1039/C8RA01813H

W. Chen, Y. Wang, M. Liu, L. Gao, L. Mao, Z. Fan, W. Shangguan, Applied Surface Science, 444, (2018), 485–490. https://doi.org/10.1016/j.apsusc.2018.03.068

Y. Chao, J. Zheng, J. Chen, Z. Wang, S. Jia, H. Zhang and Z. Zhu, Catal. Sci. Technol., 7, (2017), 2798–2804. https://doi.org/10.1039/C7CY00964J

N. Soltani, E. Saion, W.M.M. Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M. RezaZare, E. Gharibshahi, Solar Energy, 97, (2013), 147–154. https://doi.org/10.1016/j.solener.2013.08.023

Q. Wang, J. Lian, Q. Ma, Y. Bai, J. Tong, J. Zhong, R. Wang, H. Huang and B. Su, New J. Chem., 39, (2015), 7112–7119. https://doi.org/10.1039/C5NJ00987A

L. Ge, F. Zuo, J. Liu, Q. Ma, C. Wang, D. Sun, L. Bartels and P. Feng, Phys. Chem. C, 116, (2012), 13708–13714. https://doi.org/10.1021/jp3041692

S. Bellamkonda and G. RangaRao, Catalysis Today, 321–322, (2019), 18–25. https://doi.org/10.1016/j.cattod.2018.03.025

S.R. Dhag, H.A. Colorado, & T. Hahn, Nanoscale research letters, 2011, 6(1), 1–5. https://doi.org/10.1186/1556-276X-6-420

S.C. Yan, Z.S. Li, & Z.G. Zou, Langmuir, 25, (2009), 10397–10401. https://doi.org/10.1021/la900923z

Minsik Kim, Sohee Hwang and Jong-Sung Yu, J. Mater. Chem., 17, (2007), 1656–1659. https://doi.org/10.1039/B702213A

X. Li, J. Zhang, L. Shen, Y. Ma, W. Lei, Q. Cui & G. Zou., Applied Physics A, 94, (2009), 387–392. https://doi.org/:10.1007/s00339-008-4816-4

Q. Jian, Z. Jin, H. Wang, Y. Zhangabc and G. Wang, Dalton Trans., 48, (2019), 4341–4352. https://doi.org/10.1039/C8DT05110K

X. Li, Mi. Edelmannová, P. Huo & K. Kočí, Journal of Materials Science, 55, (2020), 3299–3313. https://doi.org/:10.1007/s10853-019-04208-x

Y.F. Zhao, Y.P. Sun, X. Yin, R. Chen, G.C. Yin, M.L. Sun, F.C. Jia, and B. Liu, Journal of Nanoscience and Nanotechnology, 20, (2020), 1098–1108. https://doi.org/10.1166/jnn.2020.16984

G. Xin and Y. Meng, Journal of Chemistry, 2013, (2013), 5 pages. https://doi.org/10.1155/2013/187912

Z.L. Fang., H.F. Rong, L.Y. Zhou, & P. Qi, Journal of Materials Science, 50, (2015), 3057–3064. https://doi.org/10.1007/s10853-015-8865-8

M. Lu, Z. Pei, S. Weng, W. Feng, Z. Fang, Z. Zheng, M. Huanga and P. Liu, Physical Chemistry Chemical Physics, 16, (2014), 21280–21288. https://doi.org/10.1039/C4CP02846

Published

31-12-2022

Issue

Section

Full Articles

How to Cite

Synthesis and photocatalytic activity of g-C3N4/CdS materials under visible light. (2022). Vietnam Journal of Catalysis and Adsorption, 11(4), 38-43. https://doi.org/10.51316/jca.2022.067

Share

Funding data

Most read articles by the same author(s)

Similar Articles

1-10 of 142

You may also start an advanced similarity search for this article.