Synthesis of TiO2/g-C3N4 material for visble light driven photocatalytic degradation of methylene blue
DOI:
https://doi.org/10.51316/jca.2020.044Keywords:
TiO2/g-C3N4, methylene blue, visible light, photocatalystAbstract
In this study, an efficient strategy for the synthesis of solvent titanium dioxide and titanium dioxide/graphitic carbon nitride (TiO2/g-C3N4) heterostructure photocatalyst was applied to fabricate a kind of visible-light-driven photocatalyst. The obtained samples were characterised by means of X-ray diffraction, infrared spectroscopy, ultraviolet–visible spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy and photoluminescence. The heterostructure shows higher absorption edge towards harvesting more solar energy compared with pure TiO2 and pure g-C3N4 respectively. The photocatalytic behaviour under visible light and kinetics of the TiO2/g-C3N4 catalyst via methylene blue degradation were addressed. The results showed that the introduction of solvent titanium dioxide into g-C3N4 enhanced the photocatalytic activity in the visible light region. TiO2/g-C3N4 is potential visible light driven photocatalyst for the organic substances degradation in aqueous solutions.
Downloads
References
Gupta S.M., Tripathi M. (2011). A review of TiO2 nanoparticles. Chinese Science Bulletin, Vol.56, Iss.16, pp.1639–1657. https://doi.org/10.1007/s11434-011-4476-1.
Kafizas A., Wang X., Pendlebury S.R., et al. (2016). Where Do Photogenerated Holes Go in Anatase:Rutile TiO2? A Transient Absorption Spectroscopy Study of Charge Transfer and Lifetime. Journal of Physical Chemistry A, Vol.120, Iss.5, pp.715–723. https://doi.org/10.1021/am508505n.
Li, K.; Gao S. M.; Wang Q. Y.; Xu H.; Wang Z.Y.; Huang B. B.; Dai Y.,Lu J. (2015). In-Situ-Reduced Synthesis of Ti3+Self-Doped TiO2/g-C3N4 Heterojunctions with High Photocatalytic Performance under LED Light Irradiation. ACS Appl. Mater. Interfaces, 7: 9023-9030. https://doi.org/10.1021/am508505n.
David M. Teter, Russell J. Hemley (1996). Low-Compressibility Carbon Nitrides, Science, 271 (5245), 53-55. DOI: 10.1126/science.271.5245.53.
Michael Janus Bojdys aus Grudziadz (2009). On new allotropes and nanostructures of carbon nitrides, Mathematisch-Naturwissenschaftlichen Fakultat der Universitat Potsdam. http://opus.kobv.de/ubp/volltexte/2010/4123/ URN urn:nbn:de:kobv:517-opus-41236 http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-41236.
Bavykin D. V., Parmon V.N., Lapkin A.A., et al. (2004). The effect of hydrothermal 125 conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry, Vol.14, Iss.22, pp.3370. https://doi.org/10.1039/B406378C.
Chen X., Cao S., Weng X., et al. (2012). Effects of morphology and structure of titanate supports on the performance of ceria in selective catalytic reduction of NO. Catalysis Communications, Vol.26, pp.178–182. https://doi.org/10.1016/j.catcom.2012.05.019.
Farghali A.A., Zaki A.H., Khedr M.H., et al. (2014). Hydrothermally synthesized TiO2 nanotubes and nanosheets for photocatalytic degradation of color yellow sunset. International Journal of Advanced Research, Vol.2, Iss.7, pp.285–291. ISSN 2320-5407.
Kasuga T., Hiramatsu M., Hoson A., et al. (1999). Titania nanotubes prepared by chemical processing. Adv Mater, Vol.11, Iss.15, pp.1307–+. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H.
Yu J., Yu H. (2006). Facile synthesis and characterization of novel nanocomposites of titanate nanotubes and rutile nanocrystals. Materials Chemistry and Physics, Vol.100, Iss.2–3,pp.507–512. https://doi.org/10.1016/j.matchemphys.2006.02.002.
Z. Jin, Q. Zhang, S. Yuan, T. Ohno, (2015). Synthesis high specific surface area nanotube g-C3N4 with two-step condensation treatment of melamine to enhance photocatalysis properties, RSC Advances, 5(6), 4026 - 4029. DOI: 10.1039/C4RA13355B.
Song, X.; Hu, Y.; Zheng, M.; Wei, C. (2016). Solvent-Free in Situ Synthesis of g-C3N4/{001}TiO2 Composite with Enhanced UV- and Visible-Light Photocatalytic Activity for NO Oxidation. Appl. Catal. B-Envion, 182, 587−597. https://doi.org/10.1016/j.apcatb.2015.10.007.
Jiang, Y.; Li, F.; Liu, Y.; Hong, Y.; Liu, P.; Ni, L. (2016). Construction of TiO2 Hollow Nanosphere/g-C3N4 Composites with Superior Visible-Light Photocatalytic Activity and Mechanism Insight. J. Ind. Eng. Chem, 41, 130−140. https://doi.org/10.1016/j.jiec.2016.07.013.
Sheng, Y.; Wei, Z.; Miao, H.; Yao, W.; Li, H.; Zhu, Y. (2019). Enhanced Organic Pollutant Photodegradation viaAdsorption/Photocatalysis Synergy Using a 3D g-C3N4/TiO2 Free-Separation Photocatalyst. Chem. Eng. J., 370, 287−294. https://doi.org/10.1016/j.cej.2019.03.197
Wei, K.; Li, K.; Yan, L.; Luo, S.; Guo, H.; Dai, Y.; Luo, X. (2018). One-Step Fabrication of g-C3N4 Nanosheets/TiO2 Hollow Microspheres Heterojunctions with Atomic Level Hybridization and Their Application in the Multi-Component Synergistic Photocatalytic Systems. Appl. Catal. B-Environ, 222, 88−98. https://doi.org/10.1016/j.apcatb.2017.09.070.
Wei, Z.; Liang, F.; Liu, Y.; Luo, W.; Wang, J.; Yao, W.; Zhu, Y. (2017). Photoelectrocatalytic Degradation of Phenol-Containing Wastewater by TiO2/g-C3N4 Hybrid Heterostructure Thin Film. Appl. Catal. B-Environ., 201, 600−606. https://doi.org/10.1016/j.apcatb.2016.09.003
Jiang, G.; Yang, X.; Wu, Y.; Li, Z.; Han, Y.; Shen, X. (2017). A Study of Spherical TiO2/g-C3N4 Photocatalyst: Morphology, Chemical Composition and Photocatalytic Performance in Visible Light. Mol. Catal, 432, 232−241. https://doi.org/10.1016/j.mcat.2016.12.026.