Synthesis and photocatalytic activity of ZnO/g-C3N4 materials under visible light

Authors

  • Nguyen Thi Viet Nga Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Do Thi Hong Tram Tay Son high school, Tay Son, Binh Dinh Author
  • Nguyen Bich Nhat Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Tran Chau Giang Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Tran Dinh Thinh Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Truong Thanh Tam Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Nguyen Van Kim Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author

DOI:

https://doi.org/10.51316/jca.2021.084

Keywords:

ZnO/g-C3N4, photocatalyst, methylenblue, visible light

Abstract

Novel photocatalysts ZnO/g-C3N4 have been synthesized by a facile route in which mixtures of zinc acetate dihydrate and melamine are heated at 550 oC. The obtained materials were characterized by X-Ray diffraction (XRD), infrared spectra (IR), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The UV-vis DRS results showed that ZnO, g-C3N4, and ZnO/g-C3N4 materials possess bandgap of around 3.25, 2.70, and 2.79 eV, respectively. The photocatalytic activity of the materials was assessed by degradation of methylene blue (MB) under visible light. Among the three materials,    ZnO/g-C3N4 exhibited the highest photocatalytic activity. The improved photocatalytic activity of the ZnO/g-C3N4 is attributed to the presence of g-C3N4 in the materials.

Downloads

Download data is not yet available.

References

C. A. K. Gouvea, F. Wypych, S. G. Moraes, N. Duran and P. Peralta-Zamora, Chemosphere 40(4) (2000) 427–432. https://doi.org/10.1016/S0045-6535(99)00312-4

H. Cao, J. Y. Xu, D. Z. Zhang, S. H. Chang, S. T. Ho, E. W. Seeling, X. Liu and R. P. H. Chang, Phys. Rev. Lett. 84(24) (2000) 5584–5587. https://doi.org/10.1103/PhysRevLett.84.5584

E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito and T. Fukuda, J. Cryst. Growth 260 (2004) 166–170. https://doi.org/10.1016/j.jcrysgro.2003.08.019

S. Park, D. W. Lee, J. C. Lee and J. H. Lee, J. Am. Ceram. Soc. 86(9) (2003) 1508–1512.

https://doi.org/10.1111/j.1151-2916.2003.tb03505.x

R. Ullah and J. Dutta, J. Hazard. Mater. 156 (2008) 194–200. https://doi.org/10.1016/j.jhazmat.2007.12.033

M. A. Mahmood, S. Baruah and J. Dutta, Mater. Chem. Phys. 130 (2011) 531–535.

https://doi.org/10.1016/j.matchemphys.2011.07.018

R. Slama, F. Ghribi, A. Houas, C. Barthou and L. E. Mir, Thin Solid Films 519 (2011) 5792–5795. https://hal.archives-ouvertes.fr/hal-01236788

R. Nagaraja, N. Kottam, C. R. Girija and B. M. Nagabhushana, Powder Technol. 215 (2012) 91–97. https://doi.org/10.1016/j.powtec.2011.09.014

T. Xiong, W. Cen, Y. Zhang, F. Dong, ACS Catal. 6(4) (2016) 2462–2472. https://doi.org/10.1021/acscatal.5b02922

Y. Wang, Y. Li, X. Bai, Q. Cai, C. Liu, Y. Zuo, S. Kang, L. Cui, Catal. Commun. 84 (2016) 179–182. https://doi.org/1016/j.catcom.2016.06.020

Yongzheng Duan, Materials Research Bulletin 105 (2018) 68–74.

https://doi.org/10.1016/j.materresbull.2018.04.038

Hui Zhang, Feng Liu, Hao Wu, Xin Cao, Jianhua Sun and Weiwei Lei, RSC Adv. 7 (2017) 40327–40333. https://doi.org/10.1039/C7RA06786K

J. Zhao, L. Ma, H. Wang, Y. Zhao, J. Zhang, S. Hu, Appl. Surf. Sci. 332 (2015) 625–630.

https://doi.org/10.1016/j.apsusc.2015.01.233

K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Appl. Catal. B 176 (2015) 44–52. https://doi.org/10.1016/j.apcatb.2015.03.045

S. Samanta, S. Martha, K. Parida, ChemCatChem 6 (2014) 1453–1462. https://doi.org/10.1002/cctc.201300949

D. Ghosh, G. Periyasamy, S.K. Pati, J. Phys. Chem. C 118(28) (2014) 15487–15494.

https://doi.org/10.1021/jp503367v

Jia-Xin Sun, Yu-Peng Yuan, Ling-Guang Qiu, Xia Jiang, An-Jian Xie, Yu-Hua Shen and Jun-Fa Zhu, Dalton Trans. 41(22) (2012) 6756–6763. https://doi.org/10.1039/c2dt12474b

Noor Izzati Md Rosli, Sze-Mun Lam, Jin-Chung Sin, Ichikawa Satoshi and Abdul Rahman Mohamed, Journal of Environmental Engineering 144(2) (2018) 04017091.

https://doi.org/10.1061/(ASCE)EE.1943-7870.0001300

K. Ravichandran, K. Kalpana, R. Uma, E. Sindhuja, K. Shanthaseelan, Materials Research Bulletin 99 (2018) 268–280. https://doi.org/10.1016/j.materresbull.2017.11.010

Wali Muhammad, Naimat Ullah, Muhammad Haroon and Bilal Haider Abbasi, RSC Adv., 9(51) (2019) 29541–29548. https://doi.org/10.1039/C9RA04424H

Eunyong Janga, Dae Woong Kim, Seong Hwan Hongb, Young Min Parkc, Tae Joo Park, Applied Surface Science 487 (2019) 206–210. https://doi.org/10.1016/j.apsusc.2019.05.035

Devina Rattan Paul, Shubham Gautam, Priyanka Panchal, Satya Pal Nehra, Pratibha Choudhary and Anshu Sharma, ACS Omega 5(8) (2020) 3828–3838. https://doi.org/10.1021/acsomega.9b02688

R. C. Ngullie, S. O. Alaswad, K. Bhuvaneswari, P. Shanmugam, T. Pazhanivel and P.Arunachalam, Coatings 10 (2020) 500. https://doi.org/10.3390/coatings10050500

Published

30-01-2022

Issue

Section

Full Articles

How to Cite

Synthesis and photocatalytic activity of ZnO/g-C3N4 materials under visible light. (2022). Vietnam Journal of Catalysis and Adsorption, 10(1S), 18-23. https://doi.org/10.51316/jca.2021.084

Share

Funding data

Most read articles by the same author(s)

Similar Articles

1-10 of 127

You may also start an advanced similarity search for this article.