Preparation of poly(1,8-diaminonaphthalene)-based molecularly imprinted polymers for rhodamine onto ITO/Au electrodes and analytical application by surface-enhanced Raman spectroscopy (SERS)

Authors

  • Nguyen Thi Tuyet Mai School of Chemical Engineering, Hanoi University of Science and Technology Author https://orcid.org/0000-0002-8901-2395
  • Giap Van Hung School of Chemical Engineering, Hanoi University of Science and Technology Author
  • Nguyen Le Huy School of Chemical Engineering, Hanoi University of Science and Technology Author https://orcid.org/0000-0002-8067-2565

DOI:

https://doi.org/10.51316/jca.2023.021

Keywords:

SERS, MIP, poly(1,8-diaminonaphthalene), rhodamine, Raman, nano Au

Abstract

In this report, poly(1,8-diaminonaphthalene) as a molecularly imprinted polymer (MIP) coated on gold nanoparticles (nano Au) dispersed on ITO electrode was prepared. While nano Au strongly enhance the Raman signal of the analyte, MIP layer allows to selective trap and enrich the analyte molecules close to the Au surface. In fact, by building a polymer matrix around target molecules, in this case is rhodamine B and then extraction of the imprinted molecules, we can create the specific cavities in the MIP shell with a 3D structure complementary to the template molecule in shape and chemical functionality. The rhodamine molecules on ITO/Au/MIP substrate were detected using surface-enhanced Raman spectroscopy (SERS) with an enhancement factor of 106. The SERS peak intensity at 611 and 771 cm-1 was found to be proportional to the Rhodamine concentration with correlation coefficients of 0.993 and 0.935, respectively. These results open up prospects for development of poly(1,8-diaminonaphthalene) as a molecularly imprinted polymer for applications in plasmonic sensing.

Downloads

Download data is not yet available.

Author Biography

  • Nguyen Le Huy, School of Chemical Engineering, Hanoi University of Science and Technology

    Hanoi University of Science and Technology,

References

M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26 (1974) 163-166. https://dx.doi.org/10.1016/0009-2614(74)85388-1

S. Fornasaro, F. Alsamad, M. Baia, L.A.E. Batista de Carvalho, C. Beleites, H.J. Byrne, A. Chiadò, M. Chis, M. Chisanga, A. Daniel, J. Dybas, G. Eppe, G. Falgayrac, K. Faulds, H. Gebavi, F. Giorgis, R.

Goodacre, D. Graham, P. La Manna, S. Laing, L. Litti, F.M. Lyng, K. Malek, C. Malherbe, M.P.M. Marques, M. Meneghetti, E. Mitri, V. Mohaček-Grošev, C. Morasso, H. Muhamadali, P. Musto, C. Novara, M. Pannico, G. Penel, O. Piot, T. Rindzevicius, E.A. Rusu, M.S. Schmidt, V. Sergo, G.D. Sockalingum, V. Untereiner, R. Vanna, E. Wiercigroch, A. Bonifacio, Analytical Chemistry 92 (2020) 4053-4064. https://doi.org/10.1021/acs.analchem.9b05658

A.J. McQuillan, Notes and Records of the Royal Society 63 (2009) 105-109. https://10.1098/rsnr.2008.0032

Y. Kou, T. Wu, H. Zheng, N.R. Kadasala, S. Yang, C. Guo, L. Chen, Y. Liu, J. Yang, ACS Sustainable Chemistry & Engineering 8 (2020) 14549-14556. https://doi.org/10.1021/acssuschemeng.0c05065

X. Guo, J. Li, M. Arabi, X. Wang, Y. Wang, L. Chen, ACS Sensors 5 (2020) 601-619. https://doi.org/10.1021/acssensors.9b02039

C.C. Villa, L.T. Sánchez, G.A. Valencia, S. Ahmed, T.J. Gutiérrez, Trends in Food Science & Technology 111 (2021) 642-669. https://doi.org/10.1016/j.tifs.2021.03.003

B.T. Hong Van, D.T. Thuy, N.L. Huy, N.T.T. Mai, T.D. Lam, N.T. Dung, Vietnam Journal of Science and Technology 60 (2022) 1056-1066. https://doi.org/10.15625/2525-2518/16658

T.V. Vu, M.T.T. Nguyen, T.T. Do, H.L. Nguyen, V.-A. Nguyen, D.T. Nguyen, Electroanalysis 34 (2022) 1478-1486. https://doi.org/10.1002/elan.202100643

D.T. Nguyen, L.D. Tran, H. Le Nguyen, B.H. Nguyen, N. Van Hieu, Talanta 85 (2011) 2445-2450. https://doi.org/10.1016/j.talanta.2011.07.094

H.G. Van, H.N. Le, V.B.T. Hong, D.N. Tuan, M.N.T. Tuyet, Vietnam Journal of Catalysis and Adsorption 9 (2020) 111-115. https://doi.org/10.51316/jca.2020.018

M.R. Gonçalves, F. Enderle, O. Marti, Journal of Nanotechnology 2012 (2012) 173273. https://10.1155/2012/173273

S. Lin, W.-L.-J. Hasi, X. Lin, S.-q.-g.-w. Han, X.-T. Lou, F. Yang, D.-Y. Lin, Z.-W. Lu, Analytical Methods 7 (2015) 5289-5294. https://doi.org/10.1039/C5AY00028A

V. Moreno, K. Murtada, M. Zougagh, Á. Ríos, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 223 (2019) 117302. https://doi.org/10.1016/j.saa.2019.117302

K. Zhang, J. Wei, H. Zhu, F. Ma, S. Wang, Materials Research Bulletin 48 (2013) 1338-1341. https://doi.org/10.1016/j.materresbull.2012.12.029

C.-C. Chang, S.-L. Yau, J.-W. Tu, J.-S. Yang, Surface Science 523 (2003) 59-67. https://doi.org/10.1016/S0039-6028(02)02352-X

L. Thi Dang, H. Le Nguyen, H. Van Pham, M.T.T. Nguyen, Nanotechnology 33 (2021) 075704. https://doi.org/10.1088/1361-6528/ac201a

Published

30-06-2023

Issue

Section

Full Articles

How to Cite

Preparation of poly(1,8-diaminonaphthalene)-based molecularly imprinted polymers for rhodamine onto ITO/Au electrodes and analytical application by surface-enhanced Raman spectroscopy (SERS). (2023). Vietnam Journal of Catalysis and Adsorption, 12(2), 1-6. https://doi.org/10.51316/jca.2023.021

Share

Funding data

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1-10 of 226

You may also start an advanced similarity search for this article.