Effect of adsorption on photocatalytic activity for rhodamine B degradation of copper-doped tungsten disulfide

Authors

  • Nguyen Cong Minh Quy Nhon University, Vietnam Author
  • Nguyen Pham Chi Thanh Quy Nhon University, Vietnam Author
  • Nguyen Thi My Duyen Quy Nhon University, Vietnam Author
  • Nguyen Van Phuc Quy Nhon University, Vietnam Author
  • Truong Duy Huong Quy Nhon University, Vietnam Author
  • Vo Vien Quy Nhon University, Vietnam Author

DOI:

https://doi.org/10.51316/jca.2020.027

Keywords:

Copper-doped WS2, WS2 rhodamin B, adsorption, photocatalytic

Abstract

In this study, the Cu-doped WS2 materials were synthesized by a simple solid-state calcination of mixture of tungstic acid, thiourea and copper (II) acetate monohydrate in Ar gas at 650 oC for 1h, and denoted as xCu-WS2, where x is atomic percentage ratios of Cu/W (x= 1, 3, 5%) and weigh ratio of tungstic acid/thiourea is constant (1:5). The obtained products were characterized by X-ray diffraction, infrared, energy-dispersive X-ray spectroscopy, scan electron microscopy and UV-Vis diffuse reflectance spectroscopy. The photocatalytic performance of the samples was assessed through photodegradation of rhodamine B (RhB). Interestingly, there is a synergistic relationship between adsorption and photocatalysis, in which, a higher relative adsorption might give a better photocatalytic results due to reactive species reacting with absorbed organic matter on the catalyst surface rather than in the bulk of solution. The photodegradation of RhB over the 1Cu-WS2 catalyst was enhanced significantly with the highest efficiency up to 95.35% at pH 8 for 6 hours of visible light irradiation, which is attributed to the high adsorption of RhB cationic dye on the material surface. The photocatalytic mechanism was discussed as well.

Downloads

Download data is not yet available.

References

M. D. Karkas, O. Verho, E. V. Johnston, B. Akermark, Chem. Rev., 114, 24, (2014) 11863-12001. https://doi.org/10.1021/cr400572f

H. Zhang, ACS Nano, 9, (2015) 9451-9469. https://doi.org/10.1021/acsnano.5b05040

X. Peng, L. Peng, C. Wu, Y. Xie, Chem. Soc. Rev., 43, (2014) 3303-3323. https://doi.org/10.1039/C3CS60407A

X. Sun, H. Deng, W. Zhu, Z. Yu, C. Wu, Y. Xie, Angew. Chem. Int. Ed., 55, 5, (2016) 1704-1709. https://doi.org/10.1002/anie.201508571

S. V. Vattikuti, C. Byon, V. Chitturi, Superlattices and Microstructures, 2016, 94, (2016) 39-50. https://doi.org/10.1016/j.spmi.2016.03.042

Y. Nosaka, A. Y. Nosaka, Chemical Reviews, 117(17), (2017) 11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161

H. S. Son, S. J. Lee, I. H. Cho, K. D. Zoh, Chemosphere, 57, (2004) 309–317. https://doi.org/10.1016/j.chemosphere.2004.05.008

Ji, J. Zhang, F. Chen, M. Anpo, Appl. Catal. B: Environ., 85, (2009) 148–154. https://doi.org/10.1016/j.apcatb.2008.07.004

C. Martínez, M. L. Canle, M. I. Fernández, J. A. Santaballa, J. Faria, Appl. Catal. B: Environ., 102, (2011) 563–571. https://doi.org/10.1016/j.apcatb.2010.12.039

W. Zou, B. Gao, Y. Ok, L. Dong, Chemosphere, 218, (2019) 845–859. https://doi.org/10.1016/j.chemosphere.2018.11.175

D. Friedmann, C. Mendive, D. Bahnemann, Appl. Catal. B: Environ., 99, (2010) 398–406. https://doi.org/10.1016/j.apcatb.2010.05.014

C. B. Mendive, T. Bredow, A. Feldhoff, M. Blesa, D. Bahnemann, Phys. Chem. Chem. Phys., 10, (2008), 1960–1974. https://doi.org/10.1039/B800140P

T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C, 111, (2007) 5259–5275. https://doi.org/10.1021/jp069005u

Y. Luo, X. Wei, B. Gao, W. Zou, Y. Zheng, Y. Yang, Y. Zhang, Q. Tong, L. Dong, Chemical Engineering Journal, 375 (2019) 122019. https://doi.org/10.1016/j.cej.2019.122019

Y. Yang, Y. Chun, G. Sheng, and M. Huang, Langmuir, 20 (2004) 6736-6741. https://doi.org/10.1021/la049363t

A. Khataee, Eghbali, M. H. Irani-Nezhad, A. Hassani, Ultrasonics Sonochemistry, 48, (2018) 329–339. https://doi.org/10.1016/j.ultsonch.2018.06.003

S. Wang, G. Li, G. Du, L. Li, X. Jiang, C. Feng, Z. Guo, S. Kim, Nanoscale Research Letters, 5(8), (2010) 1301–1306. https://doi.org/10.1007/s11671-010-9642-x

J. Theerthagiri, R. A. Senthil, A. Malathi, A. Selvi, J. Madhavan, M. Ashokkumar, RSC Advances, 5(65), (2015) 52718–52725. https://doi.org/10.1039/C5RA06512G

C. C. Wang, C. K. Lee, M. D. Lyu, L. C. Juang, Dyes Pigment., 76, (2008) 817–824. https://doi.org/10.1016/j.dyepig.2007.02.004

H.-Y. Xu, L.-C. Wu, H. Zhao, L.-G. Jin, S.-Y. Qi, PLoS ONE, 10(11), (2015) e0142616. https://doi.org/10.1371/journal.pone.0142616

Qin, Y. Yang, X. Zhang, J. Niu, H. Yang, S. Tian, J. Zhu, M. Lu, Nanomaterials, 8(1), (2018, 4. https://doi.org/10.3390/nano8010004

R. Jiang, H. Y. Zhu, G. M. Zeng, L. Xiao, Y. J. Guan, J Cent South Univ Technol.; 17, (2010) 1223–1229. https://doi.org/10.1007/s11771-010-0623-0

N. Rioja, Benguria, F. J. Peñas, S. Zorita, Environ Sci Pollut Res., 21, (2014) 11168–11177. https://doi.org/10.1007/s11356-014-2593-5

Published

30-07-2020

Issue

Section

Full Articles

How to Cite

Effect of adsorption on photocatalytic activity for rhodamine B degradation of copper-doped tungsten disulfide. (2020). Vietnam Journal of Catalysis and Adsorption, 9(2), 42-48. https://doi.org/10.51316/jca.2020.027

Share

Most read articles by the same author(s)

Similar Articles

1-10 of 266

You may also start an advanced similarity search for this article.