Green synthesis of cuprous oxide (Cu2O) nano particles using aloe vera plant
DOI:
https://doi.org/10.51316/jca.2021.028Keywords:
Green synthesis, cuprous oxide, aloe veraAbstract
In the present work, a green synthesis of cuprous oxide nanoparticles was demonstrated using the freshly prepared aqueous extract of the aloe vera plant and the cupper oxide nanoparticles were characterized by the analytical techniques such as UV-Vis, FT-IR, XRD, and EDX. Characterization techniques confirmed that the biomolecules involved in the formation of cupper oxide nanoparticles and also they stabilized the nanoparticles.
Downloads
References
Kanchi, Suvardhan; Ahmed, Shakeel, Green Synthesis, Characterization and Applications of Nanoparticles, Elsevier Inc., 2019, p.501.
A. Bumajdad, J. Eastoe, M.I. Zaki, R.K. Heenan, L. Pasupulety, J. Colloid Int. Sci. 312 (2007) 68-75. https://doi.org/10.1016/j.jcis.2006.09.007
S. Deepika, R.H. Kumar, C.I. Selvaraj, S.M. Roopan, Scrivener Publishing LLC, 2018, p.164.
T. Huang, K. Jiang, D. Chen, G. Shen, Chinese Chem. Lett. 29(4) (2018) 553–563. https://doi.org/10.1016/j.cclet.2017. 12.007
J. D. Kwon et al., Appl. Surf. Sci. 285 (2013) 373-379. https://doi.org/10.1016/j.apsusc.2013.08.063
L.J. Minggu, K.H. Ng, H.A. Kadir, M.. Kassim, Ceram. Int. 40(10) (2014) 16015–16021. https://doi.org/10.1016/j.ceramint.2014. 07.135.
X.Z. Chu et al., Ceram. Int. 43(11) (2017) 8222–8229. https://doi.org/10.1016/j.ceramint.2017.03.150
M. Kumar, R.R. Das, M. Samal, K. Yun, Mater. Chem. Phys. 218 (2018) 272–278. https://doi.org/10.1016/j.matchemphys. 2018.07.048
S. Sun, X. Zhang, Q. Yang, S. Liang, X. Zhang, Prog. Mater. Sci. 96 (2018) 111-173, https://doi.org/10.1016/j.pmatsci.2018.03.006
T. Li, M. He, W. Zeng, J. Alloys Compd. 712(25) (2017) 50-58. https://doi.org/10.1016/j.jallcom. 2017.04.057
Q. Guo, Y. Li, W. Zeng, Physical E. 114 (2019) 113564-113585. https://doi.org/10.1016/j.physe.2019.113564
X.L. Luo, M.J. Wang, D.S. Yang, J. Yang, Y.S. Chen, J. Industr. Eng. Chem. 32 (2015) 313-318. https://doi.org/10.1016/j.jiec.2015.09.015
M.I. Ghouri, E. Ahmed, Ceram. Int. 45(17) (2019) 23196–23202. https://doi.org/10.1016/j.ceramint.2019.08. 015
F. Baig, Y.H. Khattak, B.M. Soucase, S.Beg, S. Ullah, Mater. Sci. Semi. Proc. 88 (2018) 35–39. https://doi.org/10.1016/j.mssp.2018.07.031
X.L. Luo, M.J. Wang, Y. Chen, Solid State Sci. 50 (2015) 101–106. https://doi.org/10.1016/j.solidstatesciences. 2015. 10.013
T.D. Musho, C. Wildfire, N.M. Houlihan, E.M. Sabolsky, D. Shekhawat, Mater. Chem. Phys. 216 (2018) 278-284. htps://doi.org/10.1016/j.matchemphys.2018. 05.059
M.S. Aguilar, G. Rosas, Environ. Nanotechnol. Monit. Manag. (2019) 1-23. https://doi.org/10.1016/j.enmm.2018.100195
C. Ramesh, M. HariPrasad and V. Ragunathan, Current Nanoscience, 7 (2011) 995-999. https:://doi.org/10.2174/1573413 11798220781
P. Li, W. Lv, S. Ai, J. Experimen. Nanosci. 11(1) (2016) 18-27. https://doi.org/10.1080/17458080.2015.1015462
M. Behera and G. Giri, Mater. Sci. Pollution 32(4) (2014) 702-708. https://doi.org/10.2478/s13536-014-0255-4
S. Sampaio and J.C. Viana, Mater. Sci. Engiberring B 263 (2021) 114807-114819. https://doi.org/10.1016/j.mseb.2020. 114807
M. Balık, V. Bulut, I.Y. Erdogan, Inter. J. Hydrogen Energy 44(34) (2019) 18744-18755. https://doi.org/10.1016/j.ijhydene.2018. 08.159
J. F. Xu, et al., J. Raman Spectrosc. 30 (1999) 413-415. https://doi.org/10.1002/(sici)1097-4555(199905)30:5<413::aid jrs387>3.0.co;2-n
H.C.A. Murthy, B. Abebe, T. Desalegn C.H. Prakash and K. Shantaveerayya, Mater. Sci. Res. India 15(3) (2018) 279-295. http://dx.doi.org/10.13005/msri/ 150311
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Trường Đại học Bách Khoa Hà Nội
Grant numbers T2018-PC-233