Green synthesis of cuprous oxide (Cu2O) nano particles using aloe vera plant

Authors

  • Nguyen Thi Le Giang School of Engineering Physics, Hanoi University of Science and Technology, Vietnam Author
  • Nguyen Cong Tu School of Engineering Physics, Hanoi University of Science and Technology, Vietnam Author
  • Pham Van Thang School of Engineering Physics, Hanoi University of Science and Technology, Vietnam Author
  • Nguyen Thi Tuyet Mai School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam Author
  • Nguyen Thi Lan School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam Author
  • Huynh Dang Chinh School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam Author
  • Ta Ngoc Dung School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam Author
  • Le Manh Cuong Faculty Building Material, National University Civil Engineering, Hanoi, Vietnam Author
  • Luu Thi Lan Anh School of Engineering Physics, Hanoi University of Science and Technology, Vietnam Author

DOI:

https://doi.org/10.51316/jca.2021.028

Keywords:

Green synthesis, cuprous oxide, aloe vera

Abstract

In the present work,  a green synthesis of  cuprous oxide nanoparticles  was demonstrated using the freshly prepared aqueous extract of the aloe vera plant and the cupper oxide nanoparticles  were characterized by the analytical techniques such as UV-Vis, FT-IR, XRD, and EDX. Characterization techniques confirmed that the biomolecules involved  in the formation of cupper oxide nanoparticles and also they stabilized the nanoparticles.

Downloads

Download data is not yet available.

References

Kanchi, Suvardhan; Ahmed, Shakeel, Green Synthesis, Characterization and Applications of Nanoparticles, Elsevier Inc., 2019, p.501.

A. Bumajdad, J. Eastoe, M.I. Zaki, R.K. Heenan, L. Pasupulety, J. Colloid Int. Sci. 312 (2007) 68-75. https://doi.org/10.1016/j.jcis.2006.09.007

S. Deepika, R.H. Kumar, C.I. Selvaraj, S.M. Roopan, Scrivener Publishing LLC, 2018, p.164.

T. Huang, K. Jiang, D. Chen, G. Shen, Chinese Chem. Lett. 29(4) (2018) 553–563. https://doi.org/10.1016/j.cclet.2017. 12.007

J. D. Kwon et al., Appl. Surf. Sci. 285 (2013) 373-379. https://doi.org/10.1016/j.apsusc.2013.08.063

L.J. Minggu, K.H. Ng, H.A. Kadir, M.. Kassim, Ceram. Int. 40(10) (2014) 16015–16021. https://doi.org/10.1016/j.ceramint.2014. 07.135.

X.Z. Chu et al., Ceram. Int. 43(11) (2017) 8222–8229. https://doi.org/10.1016/j.ceramint.2017.03.150

M. Kumar, R.R. Das, M. Samal, K. Yun, Mater. Chem. Phys. 218 (2018) 272–278. https://doi.org/10.1016/j.matchemphys. 2018.07.048

S. Sun, X. Zhang, Q. Yang, S. Liang, X. Zhang, Prog. Mater. Sci. 96 (2018) 111-173, https://doi.org/10.1016/j.pmatsci.2018.03.006

T. Li, M. He, W. Zeng, J. Alloys Compd. 712(25) (2017) 50-58. https://doi.org/10.1016/j.jallcom. 2017.04.057

Q. Guo, Y. Li, W. Zeng, Physical E. 114 (2019) 113564-113585. https://doi.org/10.1016/j.physe.2019.113564

X.L. Luo, M.J. Wang, D.S. Yang, J. Yang, Y.S. Chen, J. Industr. Eng. Chem. 32 (2015) 313-318. https://doi.org/10.1016/j.jiec.2015.09.015

M.I. Ghouri, E. Ahmed, Ceram. Int. 45(17) (2019) 23196–23202. https://doi.org/10.1016/j.ceramint.2019.08. 015

F. Baig, Y.H. Khattak, B.M. Soucase, S.Beg, S. Ullah, Mater. Sci. Semi. Proc. 88 (2018) 35–39. https://doi.org/10.1016/j.mssp.2018.07.031

X.L. Luo, M.J. Wang, Y. Chen, Solid State Sci. 50 (2015) 101–106. https://doi.org/10.1016/j.solidstatesciences. 2015. 10.013

T.D. Musho, C. Wildfire, N.M. Houlihan, E.M. Sabolsky, D. Shekhawat, Mater. Chem. Phys. 216 (2018) 278-284. htps://doi.org/10.1016/j.matchemphys.2018. 05.059

M.S. Aguilar, G. Rosas, Environ. Nanotechnol. Monit. Manag. (2019) 1-23. https://doi.org/10.1016/j.enmm.2018.100195

C. Ramesh, M. HariPrasad and V. Ragunathan, Current Nanoscience, 7 (2011) 995-999. https:://doi.org/10.2174/1573413 11798220781

P. Li, W. Lv, S. Ai, J. Experimen. Nanosci. 11(1) (2016) 18-27. https://doi.org/10.1080/17458080.2015.1015462

M. Behera and G. Giri, Mater. Sci. Pollution 32(4) (2014) 702-708. https://doi.org/10.2478/s13536-014-0255-4

S. Sampaio and J.C. Viana, Mater. Sci. Engiberring B 263 (2021) 114807-114819. https://doi.org/10.1016/j.mseb.2020. 114807

M. Balık, V. Bulut, I.Y. Erdogan, Inter. J. Hydrogen Energy 44(34) (2019) 18744-18755. https://doi.org/10.1016/j.ijhydene.2018. 08.159

J. F. Xu, et al., J. Raman Spectrosc. 30 (1999) 413-415. https://doi.org/10.1002/(sici)1097-4555(199905)30:5<413::aid jrs387>3.0.co;2-n

H.C.A. Murthy, B. Abebe, T. Desalegn C.H. Prakash and K. Shantaveerayya, Mater. Sci. Res. India 15(3) (2018) 279-295. http://dx.doi.org/10.13005/msri/ 150311

Published

30-07-2021

Issue

Section

Full Articles

How to Cite

Green synthesis of cuprous oxide (Cu2O) nano particles using aloe vera plant. (2021). Vietnam Journal of Catalysis and Adsorption, 10(2), 54-58. https://doi.org/10.51316/jca.2021.028

Share

Funding data

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1-10 of 224

You may also start an advanced similarity search for this article.