Synthesis of SiO2/g-C3N4 composite for photocatalytic degradation of rhodamine B
DOI:
https://doi.org/10.62239/jca.2024.037Keywords:
SiO2, g-C3N4, Rhodamine B, PhotocatalyticAbstract
In this study, a visible-light-driven SiO2/g–C3N4 composite was prepared by heating a mixture of SiO2 and urea. The products were characterized by X-ray diffraction (XRD), infrared spectra (IR), scanning electron microscopy (SEM), and ultraviolet–visible diffuse reflectance spectroscopy (UV-Vis DRS). Results indicate that the composite only contained SiO2 and g-C3N4, and the SiO2/g–C3N4 composite had higher photocatalytic activities in the degradation of rhodamine B (82.2%) compared to the pristine g-C3N4 (43.9%) under visible light. The SiO2/g–C3N4 composite is a promising new material for the photodegradation of organic pollutants in wastewater due to its high photocatalytic performance, low cost, and convenient collection for reuse.
Downloads
References
Md. Ahmaruzzaman, Soumya Ranjan Mishra, Materials Research Bulletin 143 (2021) 111417. https://doi.org/10.1016/j.materresbull.2021.111417
Ali Allahresani, Mohammad Ali Nasseri & Alireza Nakhaei, Res Chem Intermed 43 (2017) 6367–6378. https://doi.org/10.1007/s11164-017-2994-4
Runxue Liu, Wanliang Yang, Guiwei He, Wei Zheng, Maokun Li, Wenliang Tao, and Mengkui Tian, ACS Omega 5 (2020) 19615-19624. https://doi.org/10.1021/acsomega.0c02161
Yi-Ching Chu, Tzu-Jen Lin, Yan-Ru Lin, Wei-Lun Chiu, Ba-Son Nguyen, Chechia Hu, Chechia Hu, Carbon 169 (2020) 338-348. https://doi.org/10.1016/j.carbon.2020.07.053
Jie Meng, Jingyuan Pei, Zefang He, Shiyan Wu, Qingyun Lin, Xiao Wei, Jixue Lia, Ze Zhanga, RSC Adv. 7 (2017) 24097-24104. https://doi.org/10.1039/C7RA02297B
F.L. Hui Zhang, Hao Wu, Xin Cao, Jianhua Sun and Weiwei Lei, RSC Adv. 7 (2017) 40327-40333. https://doi.org/10.1039/C7RA06786K
Devina Rattan Paul, Shubham Gautam, Priyanka Panchal, Satya Pal Nehra, Pratibha Choudhary, and Anshu Sharma, ACS Omega 5 (2020) 3828-3838. https://doi.org/10.1021/acsomega.9b02688
Qiang Hao, Xiuxiu Niu, Changshun Nie, Simeng Hao, Wei Zou, Jiangman Ge, Daimei Chen and Wenqing Yao, Phys. Chem. Chem. Phys. 18 (2016) 31410-31418. https://doi.org/10.1039/C6CP06122B
Tran Thi Ngoc My, Đoàn Văn Hồng Thiện, Văn Phạm Đan Thủy, Trần Thị Bích Quyên, Ngô Trương Ngọc Mai, Ta Ngoc Don, Thien Doan Van Hong, Vietnam Journal of Catalysis and Adsorption 11 (2022) 22-27. https://doi.org/10.51316/jca.2022.044
K. Prakash, P. Senthil Kumar, P. Latha, K. Saravanakumar & S. Karuthapandian, Journal of Inorganic andOrganometallic Polymers and Materials 28 (2018) 268–278. https://doi.org/10.1007/s10904-017-0715-5
Tanaporn Narkbuakaew & Pornapa Sujaridworakun, Topics in Catalysis 63 (2020) 1086–1096. https://doi.org/10.1007/s11244-020-01375-z
Zhao Mo, Xiaojie She, Yeping Li, Liang Liu, Liying Huang, Zhigang Chen, Qi Zhang, Hui Xu and Huaming Li, RSC Advances 5 (2015) 101552-101562. https://doi.org/10.1039/C5RA19586A
Meng-Jie Chang, Wen-Na Cui, Jun Liu, Kang Wang & Xiao-Jiao Chai, Journal of Materials Science: Materials in Electronics 29 (2018) 6771–6778. https://doi.org/10.1007/s10854-018-8663-6
Uma Kasimayan, Arjun Nadarajan, Chandra Mohan Singaravelu, Guan-Ting Pan, Jothivenkatachalam Kandasamy, Thomas C.-K. Yang & Ja-Hon Lin, Scientific Reports 10 (2020) 2128. https://doi.org/10.1038/s41598-020-59037-9
Ke Li, Miaomiao Chen, Lei Chen, Songying Zhao , Wencong Xue, Zixuan Han and Yanchao Han, Processes 11 (2023) 528. https://doi.org/10.3390/pr11020528