Enhanced oxidation of rhodamine B using Mg-Cu-Al hydrotalcite/chitosan composites as catalysts

Authors

  • Nguyen Thi Nhu Institute of Environment, Vietnam Maritime University, Hai Phong, Vietnam Author
  • Le Nhu Quynh Institute of Environment, Vietnam Maritime University, Hai Phong, Vietnam Author
  • Vu Van Long Institute of Environment, Vietnam Maritime University, Hai Phong, Vietnam Author
  • Tran Van Chien Institute of Environment, Vietnam Maritime University, Hai Phong, Vietnam Author
  • Nguyen Thi Thuy Hoa Institute of Environment, Vietnam Maritime University, Hai Phong, Vietnam Author
  • Le Van Hieu Institute of Environment, Vietnam Maritime University, Hai Phong, Vietnam Author

DOI:

https://doi.org/10.62239/jca.2024.051

Keywords:

Chitosan, Oxidation, Mg-Cu-Al hydrotalcite, Rhodamine B, H2O2

Abstract

A series of Mg-Cu-Al hydrotalcite/chitosan materials have been synthesized via a co‑precipitation method, in which chitosan is synthesized from chitin extraction from waste shrimp shells. The obtained solids were characterized by XRD, BET, EDX, IR techniques. The materials have a well crystallized hydrotalcite structure and medium surface area. It was observed that Mg-Cu-Al hydrotalcite/chitosan catalysts exhibited the high activity in catalyzing enhanced oxidation of rhodamine B solution with H2O2. 95% of 100 mg/L of rhodamine B solution could be decolourized by Mg-Cu-Al hydrotalcite/chitosan composite with the presence of hydrogen peroxide at room temperature for 150 minutes. Therefore, Mg-Cu-Al  hydrotalcite/chitosan is a promising and reasonable catalyst for use in the enhanced oxidation of rhodamine B.

Downloads

Download data is not yet available.

References

D.S. Morales, J.R. Jimenez and J.M.F. Rodriguez, ChemEngineering 6 (2022) 50. https://doi.org/10.3390/chemengineering6040050

N. Viswanathan, S. Meenaksh, Applied Clay Science 48 (2010), 607-611. https://doi.org/10.1016/j.clay.2010.03.012

R. Debek, M. Motak, T. Grzybek, M.E. Galvez, and P.D. Costa, Catalysts 7 (2017) 32. https://doi.org/10.3390/catal7010032

R. Karcz, B.D. Napruszewska, A. Walczyk, J.K. Czerwenka, D. Duraczynska, W. Płazinski, and E.M. Serwicka, Nanomaterials 12 (2022) 2775. doi: 10.3390/nano12162775

P.A. Terry, Chemosphere 57 (2004) 541-546. https://doi.org/10.1016/j.chemosphere.2004.08.006

A.C. Dias, M.P.F. Fontes, Applied Clay Science 191, (2020) 105615. https://doi.org/10.1016/j.clay.2020.105615

C. Irawan, M.W. Ramadhan, I.F. Nata and M.D. Putra, Earth and Environmental Science 506 (2020) 012003. https://doi.org/10.1088/1755-1315/506/1/012003

Z. Liao, O. Zoumhani, and C.M. Boutry, Materials (Basel) 16 (2023) 3802. doi: 10.3390/ma16103802.

M. Yadav, B. Kaushik, G.K. Rao, C.M. Srivastava, D. Vaya, Carbohydrate Polymer Technologies and Applications 5 (2023) 100323. https://doi.org/10.1016/j.carpta.2023.100323

K. Tanji, J.A. Navio, A. Chaqroune, J. Naja, F. Puga, M.C. Hidalgo, Abdelhak Kherbeche, Catalysis Today 338-389 (2022) 176-186. https://doi.org/10.1016/j.cattod.2020.07.044

Z. Yang, S. Yang, Y. Shiqiao and D. Yuanhong, Water Science & Technology 87 (2023) 1552. https://doi.org/10.2166/wst.2023.063

J.Das; B.S.Patra; N. Baliarsingh; K.M. Parida, J. Colloid Interface Sci 316 (2007) 216–223. https://doi.org/10.1016/j.jcis.2007.07.082

H. Wu, H. Zhang, Q. Yang, D. Wang, W. Zhang and X. Yang, Materials 10 (2017) 1320. https://doi.org/10.3390/ma10111320

S. Kanna, A. Dubey, H. Knozinger, J. Catal. 231 (2005) 381-392. https://doi.org/10.1016/j.jcat.2005.01.032

N. T. Thao, L.T.K. Huyen, 279 (2015) 840-850. https://doi.org/10.1016/j.cej.2015.05.090

C.A. Antonyraj, S. Kannan, Appl. Catal. A 338 (2008) 121-129. https://doi.org/10.1016/j.apcata.2007.12.028

V. Rives, O. Prieto, A. Dubey, S. Kannan, J. Catal 220 (2003) 161-171. https://doi.org/10.1016/S0021-9517(03)00245-8

N. Daneshvar, M.A. Behnajady, M. K. A. Mohammadi, M.S.S. Dorraji, Desalination 230 (2008) 16–26. https://doi.org/10.1016/j.desal.2007.11.012

S. Najdanovic, J. Mitrovic, A. Zarubica, A. Bojic, Physics, Chemistry and Technology 15 (2017) 23-34. https://doi.org/10.2298/FUPCT1701023N

E. Basturk and M. Karatas, Journal of Photochemistry and Photobiology A: Chemistry 299 (2015) 67-72. https://doi.org/10.1016/j.jphotochem.2014.11.003

N. Daneshvar, M. Rabbani, N. Modirshahla, M.A. Behnajady, J Hazard Mater 118 (2005) 155-160. https://doi.org/10.1016/j.jhazmat.2004.10.007

A. Salary, Y. Moussa, H. Aleboyeh, Separation and Purification Technology 43 (2005) 143-148. https://doi.org/10.1016/j.seppur.2004.10.014

Y. Zhang, G. Luo, Q. Wang, Y. Zhang, M. Zhou, Chemosphere 240 (2020) 124929. https://doi.org/10.1016/j.chemosphere.2019.124929

Published

30-09-2024

Issue

Section

GSCE2024

How to Cite

Enhanced oxidation of rhodamine B using Mg-Cu-Al hydrotalcite/chitosan composites as catalysts. (2024). Vietnam Journal of Catalysis and Adsorption, 13(3), 12-16. https://doi.org/10.62239/jca.2024.051

Share

Funding data

Similar Articles

1-10 of 356

You may also start an advanced similarity search for this article.