Synthesis of CdS nanomaterials and their photocatalytic activity under visible light
DOI:
https://doi.org/10.51316/jca.2021.082Keywords:
CdS, nanomaterial, methylenblue, visible lightAbstract
CdS nanomaterial was hydrothermally synthesized at 160 oC for 6 hours from a dispersed mixture of Cd(NO3)2.4H2O and CH3CSNH2 in 50 mL ethylenediamine and denoted as Cw-m, where w-m is the weight ratio of Cd(NO3)2.4H2O/CH3CSNH2 and equals to 1-2, 1-1 and 3-2. The obtained materials were characterized by X-Ray Diffraction (XRD), Infrared spectra (IR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray (EDX), and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-Vis-DRS). The UV-vis DRS showed that the CdS materials possess bandgap of around 2.24 eV. The photocatalytic activity of the CdS was assessed by degradation of methylene blue (MB) under visible light. The experiments indicated that CdS semiconductor materials can be active under visible light. The MB degradation over the CdS was mainly attributed to the photoreduction process induced by the superoxide radical anions (O2• -) and hydroxyl radicals (•OH).
Downloads
References
Phong D. Tran, Lydia H. Wong, James Barber and Joachim S. C. Loo, Energy Environ. Sci. 5 (2012) 5902–5918. https://doi.org/10.1039/C2EE02849B
Guancai Xie, Kai Zhang, Beidou Guo, Qian Liu, Liang Fang, Jian Ru Gong, Adv. Mater. 25 (2013) 3820–3839. https://doi.org/10.1002/adma.201301207
Wenqing Fan, Qinghong Zhang and Ye Wang, Phys. Chem. Chem. Phys., 15, (2013), 2632–2649. https://doi.org/10.1039/C2CP43524A
Kai Zhang and Liejin Guo, Catal. Sci. Technol. 3 (2013) 1672–1690. https://doi.org/10.1039/C3CY00018D
Weiming Wu, Rui Lin, Lijuan Shen, Ruowen Liang, Rusheng Yuan and Ling Wu, Phys. Chem. Chem. Phys. 15 (2013) 19422–19426.https://doi.org/10.1039/C3CP53195C
M. Imran, M. Ikram, A. Shahzadi, S. Dilpazir, H. Khan, I. Shahzadi, S. Amber Yousaf, S. Ali, J. Geng and Y. Huang, RSC Adv. 8 (2018) 18051–18058. https://doi.org/10.1039/C8RA01813H
Hui Zhang, Deren Yang, Xiangyang Ma, Materials Letters 61(16) (2007) 3507–3510. https://doi.org/10.1016/j.matlet.2006.11.105
Sanjay R Dhage, Henry A Colorado and Thomas Hahn, Nanoscale Research Letters 6(1) (2011) 420. https://doi.org/10.1186/1556-276X-6-420
Lei Ge, Fan Zuo, Jikai Liu, Quan Ma, Chen Wang, Dezheng Sun, Ludwig Bartels and Pingyun Feng, Phys. Chem. C 116(25) (2012) 13708–13714. https://doi.org/10.1021/jp3041692
Sankeerthana Bellamkonda G.Ranga Rao, Catalysis Today 321–322 (2019) 18–25. https://doi.org/10.1016/j.cattod.2018.03.025
N. Susha, K. Nandakumar and Swapna S. Nair. Enhanced photoconductivity in CdS/betanin composite nanostructures, RSC Advances 8(21) (2018) 11330–11337.
Suresh Kumar, J.K. Sharma, Materials Science-Poland 34(2) (2016) 368–373. https://doi.org/10.1515/msp-2016-0033
Zhang L. Fang, Huang F. Rong, Zhou L. Ya, Pang Qi, J. Mater. Sci. 50 (2015) 3057–3064. https://doi.org/10.1007/s10853-015-8865-8
Meiliang Lu, Zengxia Pei, Sunxian Weng, Wenhui Feng, Zhibin Fang, Zuyang Zheng, Mianli Huang and Ping Liu, Phys.Chem.Chem.Phys. 16 (2014) 21280–21288. https://doi.org/10.1039/C4CP02846E
Yan-Fei Zhao, Yu-Ping Sun, Xiu Yin, Ran Chen, Guang-Chao Yin, Mei-Ling Sun, Fu-Chao Jia and Bo Liu, J. Nanosci. Nanotechnol 20(2) (2020) 1098–1108. https://doi.org/10.1166/jnn.2020.16984
F. Lisco, P.M. Kaminski, A. Abbas, J.W. Bowers, G. Claudio, M. Losurdo, J.M. Walls, Thin Solid Films 574 (2015) 43–51. https://doi.org/10.1016/j.tsf.2014.11.065
Deuk Ho Yeon, Seung Min Lee, Yeon Hwa Jo, Jooho Moon and Yong Soo Cho, J. Mater. Chem. A, 2 (2014) 20112–20117. https://doi.org/10.1039/C4TA03433C
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2021-DQN-05