Dibenzyl viologgen adlayer functionalzed graphitic surraces using electrochemical approach
DOI:
https://doi.org/10.51316/jca.2021.083Keywords:
Dibenzyl viologen, HOPG, electrochemical deposition, physisorbed adlayerAbstract
In this contribution, the electrochemciacl deposition method is used to synthesize uncharged dibenzyl viologen (DBV0) firm on HOPG surface. Electrochemical property and surface structure of the molecular adlayer are characterized by employing a combination of cyclic voltammetry (CV) and scanning electron microscope (SEM). Consequently, the DBV0 molecules generated from the reduction of the corresponding DBV2+ molecules at the solid/liqid interface by applying suitable electrochemical potentials are able to physisorb and form a physisorbed adlayer on HOPG. The existence of the DBV0 adlayer on HOPG surface is also confirmed by its blocking effect with respect to the electron transfer at the interface of electroactive [Fe(CN)6]2+ molecules.
Downloads
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666. https://doi.org/10.1126/science.1102896
W. Cai, A.L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, R.S. Ruoff, Nano Letters 10 (2010) 1645-1651. https://doi.org/10.1021/nl9041966
P. Avouris, Nano Letters 10 (2010) 4285-4294. https://doi.org/10.1021/nl102824h
4. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angewandte Chemie International Edition 48 (2009) 7752-7777. https://doi.org/10.1002/anie.200901678
J. Park, M. Yan, Accounts of Chemical Research 46 (2013) 181-189. https://doi.org/10.1021/ar300172h
R. Phillipson, C.J. Lockhart de la Rosa, J. Teyssandier, P. Walke, D. Waghray, Y. Fujita, J. Adisoejoso, K.S. Mali, I. Asselberghs, C. Huyghebaert, H. Uji-i, S. De Gendt, S. De Feyter, Nanoscale 8 (2016) 20017-20026. https://doi.org/10.1039/C6NR07912A
J.E. Johns, M.C. Hersam, Accounts of Chemical Research 46 (2013) 77-86. https://doi.org/10.1021/ar300143e
A. Ciesielski, P. Samorì, Advanced materials (Deerfield Beach, Fla.) 28 (2016) 6030-6051.
https://doi.org/10.1002/adma.201505371
K.S. Mali, J. Greenwood, J. Adisoejoso, R. Phillipson, S. De Feyter, Nanoscale 7 (2015) 1566-1585. https://doi.org/10.1039/C4NR06470D
A. Kongkanand, P.V. Kamat, The Journal of Physical Chemistry C 111 (2007) 9012-9015.
https://doi.org/10.1021/jp0726541
S.M. Kim, J.H. Jang, K.K. Kim, H.K. Park, J.J. Bae, W.J. Yu, I.H. Lee, G. Kim, D.D. Loc, U.J. Kim, E.-H. Lee, H.-J. Shin, J.-Y. Choi, Y.H. Lee, Journal of the American Chemical Society 131 (2009) 327-331. https://doi.org/10.1021/ja807480g
H.K. Jeong, K.-j. Kim, S.M. Kim, Y.H. Lee, Chemical Physics Letters 498 (2010) 168-171. https://doi.org/10.1016/j.cplett.2010.08.065
M.-S. Ekrami-Kakhki, N. Farzaneh, S. Abbasi, H. Beitollahi, S.A. Ekrami-Kakhki, Electronic Materials Letters 14 (2018) 616-628. https://doi.org/10.1007/s13391-018-0071-9
K. Matsuyama, A. Fukui, K. Miura, H. Ichimiya, Y. Aoki, Y. Yamada, A. Ashida, T. Yoshimura, N. Fujimura, D. Kiriya, ChemistryOpen 8 (2019) 908-914.
https://doi.org/10.1002/open.201900169
D. Kiriya, M. Tosun, P. Zhao, J.S. Kang, A. Javey, Journal of the American Chemical Society 136 (2014) 7853-7856. https://doi.org/10.1021/ja5033327
T.M.T. Huynh, T.H. Phan, O. Ivasenko, S.F.L. Mertens, S. De Feyter, Nanoscale, 9 (2017) 362-368. https://doi.org/10.1039/C6NR07519C
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 104.05-2019.52