Diazonium based surface functionalization of graphite by electrochemical grafting
DOI:
https://doi.org/10.51316/jca.2020.040Keywords:
graphitic surfaces, cyclic voltammetry, Raman spectroscopy, atomic force microscopy, Electrochemical graftingAbstract
In this respect, a combination of cyclic voltammetry (CV), Raman spectroscopy, and Atomic Force Microscopy (AFM) is employed to characterize the structural, electrochemical and electronic properties of diazonium thin layers covalently functionalized highly oriented pyrolytic graphite (HOPG) surface. As a consequence, a grafted layer thin film of 4-nitro-benzene-diazonium tetrafluoroborate (4-NBD) is formed on HOPG surface with an average thickness of about 3.5 ± 0.2 nm. A D-band peak appearrance at the wave length of 1336 cm-1 on the Raman spectrum indicates an enhancing of defects caused by covalent C-C bonds. A tentative model illustrating the formation of 4-NBD grafted multilayer governed by the dendritic mechanism is also proposed. This finding opens a new approach to control the degree of functionalization of graphitic surfaces and other 2D materials.
Downloads
References
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 306 (5696), (2004) 666-669; HTTPS://DOI.ORG/10.1126/science.1102896.
Cai, W.; Moore, A. L.; Zhu, Y.; Li, X.; Chen, S.; Shi, L.; Ruoff, R. S., Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition. Nano Letters, 10 (5), (2010) 1645-1651; https://doi.org/10.1021/nl9041966.
Avouris, P., Graphene: Electronic and Photonic Properties and Devices. Nano Letters, 10 (11), (2010) 4285-4294, https://doi.org/10.1021/nl102824h.
Rao, C. N. R., Sood, A. K.,Subrahmanyam, K. S., and Govindaraj, A. Graphene: The New Two Dimensional Nanomaterial. Angew. Chem., Int. Ed., 48, (2009) 7752–7777; https://doi.org/10.1002/anie.200901678.
Phillipson, R.; Lockhart de la Rosa, C. J.; Teyssandier, J.; Walke, P.; Waghray, D.; Fujita, Y.; Adisoejoso, J.; Mali, K. S.; Asselberghs, I.; Huyghebaert, C.; Uji-i, H.; De Gendt, S.; De Feyter, S., Tunable doping of graphene by using physisorbed self-assembled networks. Nanoscale 8 48 (2016) 20017-20026. https://doi.org/10.1039/c6nr07912a.
Park, J.; Yan, M., Covalent Functionalization of Graphene with Reactive Intermediates. Accounts of Chemical Research, 46 1 (2013) 181-189. https://doi.org/10.1021/ar300172h.
Johns, J. E.; Hersam, M. C., Atomic Covalent Functionalization of Graphene. Accounts of Chemical Research 46 1 (2013) 77-86. https://doi.org/10.1021/ar300143e.
Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J. M.; Colchero, J.; Gomez-Herrero, J.; Baro, A. M. Wsxm: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 78, (2007) 8. https://doi.org/10.1063/1.2432410.
Kirkman, P. M.; Guell, A. G.; Cuharuc, A. S.; Unwin, P. R. Spatial and Temporal Control of the Diazonium Modification of sp2 Carbon Surfaces. J. Am. Chem. Soc. 136, (2014) 36–39. https://doi.org/10.1021/ja410467e.
Baranton, S.; Belanger, D. Electrochemical Derivatization of Carbon Surface by Reduction of in Situ Generated Diazonium Cations. J. Phys. Chem. B 109, (2005) 24401– 24410. https://doi.org/10.1021/jp054513+.
Amour, M. D., and Bélanger, D. Stability of Substituted Phenyl Groups Electrochemically Grafted at Carbon Electrode Surface. J. Phys. Chem. B 107, (2003) 4811–4817. https://doi.org/10.1021/jp027223r.
Barriere, F.; Downard, A. J., Covalent Modification of Graphitic Carbon Substrates by Non-Electrochemical Methods. J. Solid State Electrochem. 12, (2008) 1231-1244. https://doi.org/ 10.1007/s10008-008-0526-2.
Pinson, J.; Podvorica, F., Attachment of Organic Layers to Conductive or Semiconductive Surfaces by Reduction of Diazonium Salts. Chem. Soc. Rev. 34, (2005) 429-439. https://doi.org/10.1039/B406228K.
Malmos, K.; Dong, M. D.; Pillai, S.; Kingshott, P.; Besenbacher, F.; Pedersen, S. U.; Daasbjerg, K., Using a Hydrazone-Protected Benzenediazonium Salt to Introduce a near-Monolayer of Benzaldehyde on Glassy Carbon Surfaces. J. Am. Chem. Soc. 131, (2009) 4928-4936; https://doi.org/10.1021/ja809816x.
Ma, H. F.; Lee, L.; Brooksby, P. A.; Brown, S. A.; Fraser, S. J.; Gordon, K. C.; Leroux, Y. R.; Hapiot, P.; Downard, A. J. Scanning Tunneling and Atomic Force Microscopy Evidence for Covalent and Noncovalent Interactions between Aryl Films and Highly Ordered Pyrolytic Graphite. J. Phys. Chem. C 118, (2014) 5820–5826. https://doi.org/10.1021/jp411826s.
Ferrari, A. C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B 61, (2000) 14095–14107. https://doi.org/10.1103/physrevb.
Koehler, F. M.; Luechinger, N. A.; Ziegler, D.; Athanassiou, E. K.;Grass, R.N.; Rossi, A.;Hierold, C.; Stemmer, A.; Stark,W. J; Permanent Pattern-Resolved Adjustment of the Surface Potential of Graphene-like Carbon through Chemical Functionalization. Angew. Chem., Int. Ed. 48, (2009) 224–227. https://doi.org/10.1002/anie.200804485.