On the role of applied potential in adsorption of dibenzyl viologen molecules on HOPG surface

Authors

  • Huynh Thi Mien Trung Faculty of Natural Sciences, Quy Nhon University Author
  • Phan Thanh Hai Faculty of Natural Sciences, Quy Nhon University Author

DOI:

https://doi.org/10.51316/jca.2023.009

Keywords:

Dibenzyl viologen, doping, ECSTM, adsorption, self-assembly

Abstract

Tuning the charge carier concentration of graphene is one of the key challenges in the field of graphene research. An effective solution for this is to dope graphene by organic molecules that physisorb or self-assemble on the graphene surface. Therefore, a comprehensive understanding of their surface structures at the molecular level is realy nessesary. In this contribution, we report on the role of the applied electrode potential in the adsorption/self-assembly of such n-dope molecule, dibenzyl viologen (DBV), on a highly oriented pyrolytic graphte (HOPG) surface (a multi-layer graphene material) determined by using a combination of cyclic voltametry (CV) and electrochemical scanning tunneling microscopy (ECSTM) methods. The obtained results reveal that dibenzyl viologen molecules can exist at three redox states corresponding to three respective adsorbate phases depending on the applied electrode potential. The DBV2+ molecucles physisorb and form disordered phase, whereas DBV·+ and DBV0 moleucles self-assemble forming dimer and stacking phases, respectively, on HOPG surface.

Downloads

Download data is not yet available.

References

Geim, A. K., Science 324 5934 (2009) 1530. https://10.1126/science.1158877

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Science 306 5696 (2004) 666. https://10.1126/science.1102896

Olabi, A. G.; Abdelkareem, M. A.; Wilberforce, T.; Sayed, E. T., Renewable and Sustainable Energy Reviews (2021)110026. https://doi.org/10.1016/j.rser.2020.110026

Tiwari, S. K.; Sahoo, S.; Wang, N.; Huczko, A., Journal of Science: Advanced Materials and Devices (2020)10-29. https://doi.org/10.1016/j.jsamd.2020.01.006

Phillipson, R.; Lockhart de la Rosa, C. J.; Teyssandier, J.; Walke, P.; Waghray, D.; Fujita, Y.; Adisoejoso, J.; Mali, K. S.; Asselberghs, I.; Huyghebaert, C.; Uji-i, H.; De Gendt, S.; De Feyter, S., Nanoscale (2016)20017-20026. https://doi.org/10.1039/C6NR07912A

Kim, Y.; Ryu, J.; Park, M.; Kim, E. S.; Yoo, J. M.; Park, J.; Kang, J. H.; Hong, B. H., ACS Nano (2014) 868-874. https://doi.org/10.1021/nn405596j

Joshi, P.; Huang, H.-H.; Yadav, R.; Hara, M.; Yoshimura, M., Catalysis Science & Technology, (2020)6599-6610. https://doi.org/10.1039/D0CY00919A

Pawlak, R.; Liu, X.; Ninova, S.; D’Astolfo, P.; Drechsel, C.; Sangtarash, S.; Häner, R.; Decurtins, S.; Sadeghi, H.; Lambert, C. J.; Aschauer, U.; Liu, S.-X.; Meyer, E., Journal of the American Chemical Society (2020)12568-12573. https://doi.org/10.1021/jacs.0c03946

Xia, Z.; Leonardi, F.; Gobbi, M.; Liu, Y.; Bellani, V.; Liscio, A.; Kovtun, A.; Li, R.; Feng, X.; Orgiu, E.; Samorì, P.; Treossi, E.; Palermo, V., ACS Nano (2016)7125-7134. https://doi.org/10.1021/acsnano.6b03278

Mali, K. S.; Greenwood, J.; Adisoejoso, J.; Phillipson, R.; De Feyter, S., Nanoscale (2015)1566-1585. https://doi.org/10.1039/C4NR06470D

Márkus, B. G.; Szirmai, P.; Edelthalhammer, K. F.; Eckerlein, P.; Hirsch, A.; Hauke, F.; Nemes, N. M.; Chacón-Torres, J. C.; Náfrádi, B.; Forró, L.; Pichler, T.; Simon, F., ACS Nano (2020)7492-7501. https://doi.org/10.1021/acsnano.0c03191

Gadipelli, S.; Guo, Z. X., Progress in Materials Science (2015) 1-60. https://doi.org/10.1016/j.pmatsci.2014.10.004

Zhang, J.-N.; Ma, L.; Zhang, M.; Zhang, J.-M., Physica E: Low-dimensional Systems and Nanostructures 118 (2020) 113879. https://doi.org/10.1016/j.physe.2019.113879

Wei, P.; Liu, N.; Lee, H. R.; Adijanto, E.; Ci, L.; Naab, B. D.; Zhong, J. Q.; Park, J.; Chen, W.; Cui, Y.; Bao, Z., Nano Letters (2013)1890-1897. https://doi.org/10.1021/nl303410g

Singh, A. K.; Chaudhary, V.; Singh, A. K.; Sinha, S. R. P., Materials Today: Proceedings (2021)2919-2924. https://doi.org/10.1016/j.matpr.2020.11.352

Ramadan, S.; Zhang, Y.; Tsang, D. K. H.; Shaforost, O.; Xu, L.; Bower, R.; Dunlop, I. E.; Petrov, P. K.; Klein, N., ACS Omega (2021) 4767-4775. https://doi.org/10.1021/acsomega.0c05631

Phan, T. H.; Van Gorp, H.; Li, Z.; Trung Huynh, T. M.; Fujita, Y.; Verstraete, L.; Eyley, S.; Thielemans, W.; Uji-i, H.; Hirsch, B. E.; Mertens, S. F. L.; Greenwood, J.; Ivasenko, O.; De Feyter, S., ACS Nano (2019)5559-5571. https://doi.org/10.1021/acsnano.9b00439

Phan, T. H.; Breuer, S.; Hahn, U.; Pham, D. T.; Torres, T.; Wandelt, K., The Journal of Physical Chemistry C (2014)457-467. https://doi.org/10.1021/jp410002p

Kiriya, D.; Tosun, M.; Zhao, P.; Kang, J. S.; Javey, A., Journal of the American Chemical Society (2014)7853-7856.

Montalti, M. C., A.; Prodi, L.; Gandolfi, M. T., Handbook of Photochemistry, 3rd ed. CRC Press: Boca Raton, FL 2006. ISBN 9780367577902

Sessi, P.; Guest, J. R.; Bode, M.; Guisinger, N. P., Nano Letters(2009) 4343-4347. https://doi.org/10.1021/nl902605t

MacLeod, B. A.; Stanton, N. J.; Gould, I. E.; Wesenberg, D.; Ihly, R.; Owczarczyk, Z. R.; Hurst, K. E.; Fewox, C. S.; Folmar, C. N.; Holman Hughes, K.; Zink, B. L.; Blackburn, J. L.; Ferguson, A. J., Energy & Environmental Science (2017)2168-2179. https://doi.org/10.1039/C7EE01130J

Beladi-Mousavi, S. M.; Sadaf, S.; Mahmood, A. M.; Walder, L., ACS Nano (2017) 8730-8740. https://doi.org/10.1021/acsnano.7b02310

24. Rebuttini, V.; Fazio, E.; Santangelo, S.; Neri, F.; Caputo, G.; Martin, C.; Brousse, T.; Favier , F.; Pinna, N., Chemistry – A European Journal (2015)12465-12474. https://doi.org/10.1002/chem.201500836

Jo, K.; Choi, J.; Kim, H., Journal of Materials Chemistry C (2017) 5395-5401. https://doi.org/10.1039/C7TC01099K

Lee, S. Y.; Duong, D. L.; Vu, Q. A.; Jin, Y.; Kim, P.; Lee, Y. H., ACS Nano (2015) 9034-9042. https://doi.org/10.1021/acsnano.5b03130

Huynh, T. M. T.; Phan, T. H.; Ivasenko, O.; Mertens, S. F. L.; De Feyter, S., Nanoscale (2017)362-368. https://doi.org/10.1039/C6NR07519C

Wilms, M.; Kruft, M.; Bermes, G.; Wandelt, K., Review of Scientific Instruments (1999) 3641-3650. https://doi.org/10.1063/1.1149971

Phan, T. H.; Wandelt, K., Int J Mol Sci 14 3 (2013) 4498-4524. https://10.3390/ijms14034498

Pham, D.-T.; Gentz, K.; Zörlein, C.; Hai, N. T. M.; Tsay, S.-L.; Kirchner, B.; Kossmann, S.; Wandelt, K.; Broekmann, P., New Journal of Chemistry (2006)1439-1451. https://doi.org/10.1039/B609421J

Pham, D.-T.; Tsay, S.-L.; Gentz, K.; Zoerlein, C.; Kossmann, S.; Tsay, J.-S.; Kirchner, B.; Wandelt, K.; Broekmann, P., The Journal of Physical Chemistry C, (2007) 16428-16436. https://doi.org/10.1021/jp073469q

Published

30-03-2023

Issue

Section

Full Articles

How to Cite

On the role of applied potential in adsorption of dibenzyl viologen molecules on HOPG surface. (2023). Vietnam Journal of Catalysis and Adsorption, 12(1), 54-59. https://doi.org/10.51316/jca.2023.009

Share

Funding data

Similar Articles

1-10 of 167

You may also start an advanced similarity search for this article.