On the role of applied potential in adsorption of dibenzyl viologen molecules on HOPG surface
DOI:
https://doi.org/10.51316/jca.2023.009Keywords:
Dibenzyl viologen, doping, ECSTM, adsorption, self-assemblyAbstract
Tuning the charge carier concentration of graphene is one of the key challenges in the field of graphene research. An effective solution for this is to dope graphene by organic molecules that physisorb or self-assemble on the graphene surface. Therefore, a comprehensive understanding of their surface structures at the molecular level is realy nessesary. In this contribution, we report on the role of the applied electrode potential in the adsorption/self-assembly of such n-dope molecule, dibenzyl viologen (DBV), on a highly oriented pyrolytic graphte (HOPG) surface (a multi-layer graphene material) determined by using a combination of cyclic voltametry (CV) and electrochemical scanning tunneling microscopy (ECSTM) methods. The obtained results reveal that dibenzyl viologen molecules can exist at three redox states corresponding to three respective adsorbate phases depending on the applied electrode potential. The DBV2+ molecucles physisorb and form disordered phase, whereas DBV·+ and DBV0 moleucles self-assemble forming dimer and stacking phases, respectively, on HOPG surface.
Downloads
References
Geim, A. K., Science 324 5934 (2009) 1530. https://10.1126/science.1158877
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Science 306 5696 (2004) 666. https://10.1126/science.1102896
Olabi, A. G.; Abdelkareem, M. A.; Wilberforce, T.; Sayed, E. T., Renewable and Sustainable Energy Reviews (2021)110026. https://doi.org/10.1016/j.rser.2020.110026
Tiwari, S. K.; Sahoo, S.; Wang, N.; Huczko, A., Journal of Science: Advanced Materials and Devices (2020)10-29. https://doi.org/10.1016/j.jsamd.2020.01.006
Phillipson, R.; Lockhart de la Rosa, C. J.; Teyssandier, J.; Walke, P.; Waghray, D.; Fujita, Y.; Adisoejoso, J.; Mali, K. S.; Asselberghs, I.; Huyghebaert, C.; Uji-i, H.; De Gendt, S.; De Feyter, S., Nanoscale (2016)20017-20026. https://doi.org/10.1039/C6NR07912A
Kim, Y.; Ryu, J.; Park, M.; Kim, E. S.; Yoo, J. M.; Park, J.; Kang, J. H.; Hong, B. H., ACS Nano (2014) 868-874. https://doi.org/10.1021/nn405596j
Joshi, P.; Huang, H.-H.; Yadav, R.; Hara, M.; Yoshimura, M., Catalysis Science & Technology, (2020)6599-6610. https://doi.org/10.1039/D0CY00919A
Pawlak, R.; Liu, X.; Ninova, S.; D’Astolfo, P.; Drechsel, C.; Sangtarash, S.; Häner, R.; Decurtins, S.; Sadeghi, H.; Lambert, C. J.; Aschauer, U.; Liu, S.-X.; Meyer, E., Journal of the American Chemical Society (2020)12568-12573. https://doi.org/10.1021/jacs.0c03946
Xia, Z.; Leonardi, F.; Gobbi, M.; Liu, Y.; Bellani, V.; Liscio, A.; Kovtun, A.; Li, R.; Feng, X.; Orgiu, E.; Samorì, P.; Treossi, E.; Palermo, V., ACS Nano (2016)7125-7134. https://doi.org/10.1021/acsnano.6b03278
Mali, K. S.; Greenwood, J.; Adisoejoso, J.; Phillipson, R.; De Feyter, S., Nanoscale (2015)1566-1585. https://doi.org/10.1039/C4NR06470D
Márkus, B. G.; Szirmai, P.; Edelthalhammer, K. F.; Eckerlein, P.; Hirsch, A.; Hauke, F.; Nemes, N. M.; Chacón-Torres, J. C.; Náfrádi, B.; Forró, L.; Pichler, T.; Simon, F., ACS Nano (2020)7492-7501. https://doi.org/10.1021/acsnano.0c03191
Gadipelli, S.; Guo, Z. X., Progress in Materials Science (2015) 1-60. https://doi.org/10.1016/j.pmatsci.2014.10.004
Zhang, J.-N.; Ma, L.; Zhang, M.; Zhang, J.-M., Physica E: Low-dimensional Systems and Nanostructures 118 (2020) 113879. https://doi.org/10.1016/j.physe.2019.113879
Wei, P.; Liu, N.; Lee, H. R.; Adijanto, E.; Ci, L.; Naab, B. D.; Zhong, J. Q.; Park, J.; Chen, W.; Cui, Y.; Bao, Z., Nano Letters (2013)1890-1897. https://doi.org/10.1021/nl303410g
Singh, A. K.; Chaudhary, V.; Singh, A. K.; Sinha, S. R. P., Materials Today: Proceedings (2021)2919-2924. https://doi.org/10.1016/j.matpr.2020.11.352
Ramadan, S.; Zhang, Y.; Tsang, D. K. H.; Shaforost, O.; Xu, L.; Bower, R.; Dunlop, I. E.; Petrov, P. K.; Klein, N., ACS Omega (2021) 4767-4775. https://doi.org/10.1021/acsomega.0c05631
Phan, T. H.; Van Gorp, H.; Li, Z.; Trung Huynh, T. M.; Fujita, Y.; Verstraete, L.; Eyley, S.; Thielemans, W.; Uji-i, H.; Hirsch, B. E.; Mertens, S. F. L.; Greenwood, J.; Ivasenko, O.; De Feyter, S., ACS Nano (2019)5559-5571. https://doi.org/10.1021/acsnano.9b00439
Phan, T. H.; Breuer, S.; Hahn, U.; Pham, D. T.; Torres, T.; Wandelt, K., The Journal of Physical Chemistry C (2014)457-467. https://doi.org/10.1021/jp410002p
Kiriya, D.; Tosun, M.; Zhao, P.; Kang, J. S.; Javey, A., Journal of the American Chemical Society (2014)7853-7856.
Montalti, M. C., A.; Prodi, L.; Gandolfi, M. T., Handbook of Photochemistry, 3rd ed. CRC Press: Boca Raton, FL 2006. ISBN 9780367577902
Sessi, P.; Guest, J. R.; Bode, M.; Guisinger, N. P., Nano Letters(2009) 4343-4347. https://doi.org/10.1021/nl902605t
MacLeod, B. A.; Stanton, N. J.; Gould, I. E.; Wesenberg, D.; Ihly, R.; Owczarczyk, Z. R.; Hurst, K. E.; Fewox, C. S.; Folmar, C. N.; Holman Hughes, K.; Zink, B. L.; Blackburn, J. L.; Ferguson, A. J., Energy & Environmental Science (2017)2168-2179. https://doi.org/10.1039/C7EE01130J
Beladi-Mousavi, S. M.; Sadaf, S.; Mahmood, A. M.; Walder, L., ACS Nano (2017) 8730-8740. https://doi.org/10.1021/acsnano.7b02310
24. Rebuttini, V.; Fazio, E.; Santangelo, S.; Neri, F.; Caputo, G.; Martin, C.; Brousse, T.; Favier , F.; Pinna, N., Chemistry – A European Journal (2015)12465-12474. https://doi.org/10.1002/chem.201500836
Jo, K.; Choi, J.; Kim, H., Journal of Materials Chemistry C (2017) 5395-5401. https://doi.org/10.1039/C7TC01099K
Lee, S. Y.; Duong, D. L.; Vu, Q. A.; Jin, Y.; Kim, P.; Lee, Y. H., ACS Nano (2015) 9034-9042. https://doi.org/10.1021/acsnano.5b03130
Huynh, T. M. T.; Phan, T. H.; Ivasenko, O.; Mertens, S. F. L.; De Feyter, S., Nanoscale (2017)362-368. https://doi.org/10.1039/C6NR07519C
Wilms, M.; Kruft, M.; Bermes, G.; Wandelt, K., Review of Scientific Instruments (1999) 3641-3650. https://doi.org/10.1063/1.1149971
Phan, T. H.; Wandelt, K., Int J Mol Sci 14 3 (2013) 4498-4524. https://10.3390/ijms14034498
Pham, D.-T.; Gentz, K.; Zörlein, C.; Hai, N. T. M.; Tsay, S.-L.; Kirchner, B.; Kossmann, S.; Wandelt, K.; Broekmann, P., New Journal of Chemistry (2006)1439-1451. https://doi.org/10.1039/B609421J
Pham, D.-T.; Tsay, S.-L.; Gentz, K.; Zoerlein, C.; Kossmann, S.; Tsay, J.-S.; Kirchner, B.; Wandelt, K.; Broekmann, P., The Journal of Physical Chemistry C, (2007) 16428-16436. https://doi.org/10.1021/jp073469q
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 104.05-2019.52