Study on the electrochemical, structural and oxygen electrocatalytic behaviors of Fe-Porphyrin material deposited on HOPG surface

Authors

  • Huynh Thi Mien Trung Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Phan Thanh Hai Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Nguyen Thi Hong Phuong School of Chemistry and Life Sciences, Hanoi University of Science and Technology Author

DOI:

https://doi.org/10.62239/jca.2024.036

Keywords:

Fe-Porphyrin, thin film, electrocatalyst, ORR, AFM, EC-STM

Abstract

This paper describes an efficient approach to fabricate Fe-Porphyrin thin film deposited on highly oriented pyrolytic graphite substrate (HOPG/FePP) via  the dip-coating method serving as a novel electrocatalyst for oxygen reduction reaction (ORR) in acidic medium. The electrochemical, morphological behaviors and surface structure at the molecular level of the HOPG/FePP as well as its catalytic activities were characterized upon employing a state-of-the-art toolbox including cyclic voltammetry (CV), atomic force microscopy (AFM), electrochemical scanning tunneling microscopy (EC-STM) and linear sweep voltammetry (LSV). Consequently, the HOPG/ FePP thin film exhibited a significantly enhanced catalytic activity for ORR under applied experimental conditions.

Downloads

Download data is not yet available.

References

L.J.R. Nunes, Environments 10 (2023) 66. https://doi.org/10.3390/environments10040066.

M. Kovacicova, Transportation Research Procedia 55 (2021) 1090–1097. https://doi.org/10.1016/j.trpro.2021.07.080.

W. Strielkowski, L. Civín, E. Tarkhanova, M. Tvaronavičienė, Y. Petrenko, Energies, 14 (2021) 8240. https://doi.org/10.3390/en14248240.

K.R. Kumar, N.K. Chaitanya, N.S. Kumar, Journal of Cleaner Production, 282 (2021) 125296. https://doi.org/10.1016/j.jclepro.2020.125296.

K. Obaideen, A.G. Olabi, Y. Al Swailmeen, N. Shehata, M.A. Abdelkareem, A.H. Alami, C. Rodriguez, E.T. Sayed, Sustainability, 15 (2023) 1418. https://doi.org/10.3390/su15021418.

A. Kumar, T. Bhattacharya, S.M. Hasnain, A.K. Nayak, M.S. Hasnain, Materials Science for Energy Technologies, 3 (2020) 905-920. https://doi.org/10.1016/j.mset.2020.10.012.

A. Tshikovhi, T.E. Motaung, Sustainability, 15 (2023) 12121. https://doi.org/10.3390/su151612121.

P. Ferreira-Aparicio, J.J. Conde, A.M. Chaparro, Portable Hydrogen Energy Systems, Elsevier (2018) 15-39. https://doi.org/10.1016/B978-0-12-813128-2.00002-4.

J. Garche, L. Jürissen, The Electrochemical Society Interface, 24 (2015) 39. https://10.1149/2.F02152if.

S. Tian, B. Wang, W. Gong, Z. He, Q. Xu, W. Chen, Q. Zhang, Y. Zhu, J. Yang, Q. Fu, C. Chen, Y. Bu, L. Gu, X. Sun, H. Zhao, D. Wang, Y. Li, Nature Communications, 12 (2021) 3181. https://doi.org/10.1038/s41467-021-23517-x.

J. Gu, G.-M. Zhang, R. Yao, T. Yu, M.-F. Han, R.-S. Huang, Catalysts, 12 (2022) 250. https://doi.org/10.3390/catal12030250.

Q. Chen, Z. Zhang, R. Zhang, M. Hu, L. Shi, Z. Yao, Processes, 11 (2023) 361. DOI: 10.3390/pr11020361.

R. Zhang, Z. Zhang, Q. Chen, M. Hu, Z. Yao, The Global Environmental Engineers, 9 (2022) 49-59. https://doi.org/10.15377/2410-3624.2022.09.4.

Z. Liang, H. Guo, G. Zhou, K. Guo, B. Wang, H. Lei, W. Zhang, H. Zheng, U.-P. Apfel, R. Cao, Angewandte Chemie International Edition, 60 (2021) 8472-8476. https://doi.org/10.1002/anie.202016024.

J. Zhang, W.-J. Jiang, S. Niu, H. Zhang, J. Liu, H. Li, G.-F. Huang, L. Jiang, W.-Q. Huang, J.-S. Hu, W. Hu, Advanced Materials, 32 (2020) 1906015. https://doi.org/10.1002/adma.201906015.

Y.-B. Jiang, Z. Sun, MRS Bulletin, 44 (2019) 167-171. https://doi.org/10.1557/mrs.2019.44.

L. Xie, X.-P. Zhang, B. Zhao, P. Li, J. Qi, X. Guo, B. Wang, H. Lei, W. Zhang, U.-P. Apfel, R. Cao, Angewandte Chemie International Edition, 60 (2021) 7576-7581. https://doi.org/10.1002/anie.202015478.

N.U. Day, C.C. Wamser, The Journal of Physical Chemistry C, 121 (2017) 11076-11082.

https://doi.org/10.1021/acs.jpcc.5b02628.

L. Jin, S. Lv, Y. Miao, D. Liu, F. Song, ChemCatChem, 13 (2021) 140-152. https://doi.org/10.1002/cctc.202001179.

J.M. Park, K.-I. Hong, H. Lee, W.-D. Jang, Accounts of Chemical Research, 54 (2021) 2249-2260. https://doi.org/10.1021/acs.accounts.1c00114.

A.R. Sekhar, Y. Chitose, J. Janoš, S.I. Dangoor, A. Ramundo, R. Satchi-Fainaro, P. Slavíček, P. Klán, R. Weinstain, Nature Communications, 13 (2022) 3614. https://doi.org/10.1038/s41467-022-31288-2.

S. Seo, K. Lee, M. Min, Y. Cho, M. Kim, H. Lee, Nanoscale, 9 (2017) 3969-3979. https://doi.org/10.1039/C6NR09428G.

B.-O. Taranu, E. Fagadar-Cosma, Processes, 10 (2022) 611. https://doi.org/10.3390/pr10030611.

I. Horcas, R. Fernández, J. Gomez-Rodriguez, J. Colchero, J. Gómez-Herrero, A. Baro, Review of scientific instruments, 78 (2007). https://doi.org/10.1063/1.2432410.

T.H. Phan, K. Wandelt, The Journal of Chemical Physics, 142 (2015). https://doi.org/10.1063/1.4906892

J. Li, Y. Song, G. Zhang, H. Liu, Y. Wang, S. Sun, X. Guo, Advanced Functional Materials, 27 (2017) 1604356. https://doi.org/10.1002/adfm.201604356.

B. Yao, Y. He, S. Wang, H. Sun, X. Liu, International Journal of Molecular Sciences, 23 (2022) 6036. https://doi.org/10.3390/ijms23116036.

Published

30-06-2024

Issue

Section

Full Articles

How to Cite

Study on the electrochemical, structural and oxygen electrocatalytic behaviors of Fe-Porphyrin material deposited on HOPG surface. (2024). Vietnam Journal of Catalysis and Adsorption, 12(2), 84-88. https://doi.org/10.62239/jca.2024.036

Share

Funding data

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1-10 of 171

You may also start an advanced similarity search for this article.