Research on adsorption – desorption the ability of hydroxyapatite for Co2+ ions and recovery cobalt by electrochemical deposition

Authors

  • Le Thi Duyen Hanoi University of Mining and Geology, Duc Thang, Bac Tu Liem, Ha Noi Author
  • Le Thi Phuong Thao Hanoi University of Mining and Geology, Duc Thang, Bac Tu Liem, Ha Noi Author
  • Dinh Thi Mai Thanh University of Science and Technology of Hanoi Author
  • Nguyen Thu Phuong Vietnam Academy of Science and Technology Author

DOI:

https://doi.org/10.62239/jca.2024.019

Keywords:

Hydroxyapatite, adsorption, desorption, recovery, Co2+ ion

Abstract

Hydroxyapatite has a nanostructure with the chemical formula of Ca10(PO4)6(OH)2. In this paper, hydroxyapatite is used to study the ability to adsorb Co2+ ions. The influence of some factors on Co2+ adsorption capacity and efficiency has been studied. Co2+ adsorption efficiency and capacity reached 85.08% and 6.38 mg/g under the suitable conditions: hydroxyapatite mass of 0.2 g/50 mL solution, 50 mg/L initial Co2+ concentration, pH 5.0, exposure time of 30 minutes at room temperature (25oC). The process of desorption of Co2+ from the loaded adsorbent and recovery of metallic Co was also studied. Cobalt recovery efficiency reached 94.58% under appropriate conditions: applied current 7.5 mA, electrolysis time of 10 hours, loaded hydroxyapatite mass of 0.1 g, temperature 60oC. After desorption process, the adsorbent was regenerated for further studies. The adsorption isotherm was studied based on two Langmuir and Freundlich models. The adsorption kinetics were examined using two pseudo-first-order and pseudo-second-order kinetic models.

Downloads

Download data is not yet available.

References

F. Ma, W. Zhu, W. Cheng, J. Chen, J. Gao, Y. Xue, Y. Yan, J. Water Proc.engineering 53 (2023) 103635. https://doi.org/10.1016/j.jwpe.2023.103635

J. Kushwaha, R. Singh, Inorg. Chem. Commun. 152 (2023) 110721. https://doi.org/10.1016/j.inoche.2023.110721

H. Motaghi, P. Arabkhani, M. Parvinnia, A. Asfaram, Sep. Purif. Technol. 284 (2022) 120258. https://10.1016/j.seppur.2021.120258

M. Rajiv Gandhi, G.N. Kousalya, S. Meenakshi, Int. J. Biol. Macromol. 48 (2011) 119-124. https://doi.org/10.1016/j.ijbiomac.2010.10.009

P. Chand, Y.B. Pakade, Environ Sci Pollut Res Int, 22 (2015) 10919-10929. https://doi.org/10.1007/s11356-015-4276-2

X. Liu, H. Yin, H. Liu, Y. Cai, X. Qi, Z. Dang, J Hazard Mater 443 (2023) 130167. https://doi.org/10.1016/j.jhazmat.2022.130167

I. Anastopoulos, A. Mittal, M. Usman, J. Mittal, G. Yu, A. Núñez-Delgado, M. Kornaros, . Mol. Liq. 269 (2018) 855-868. https://doi.org/10.1016/j.molliq.2018.08.104

H. Li, J. Zhang, Y. Zhang, H. Huang, H. Ou, Y. Zhang, Sep. Purif. Technol. 319 (2023) 124058. https://doi.org/10.1016/j.seppur.2023.124058

M.A. Islam, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, Ecotoxicol Environ Saf 138 (2017) 279-285. https://doi.org/10.1016/j.ecoenv.2017.01.010

Y. Wu, J. Ming, W. Zhou, N. Xiao, J. Cai, Sci Total Environ, 884 (2023) 163887. https://doi.org/10.1016/j.scitotenv.2023.163887

M. Hamzaoui, B. Bestani, N. Benderdouche, J. Mater. Environ. Sci. 9(4) (2018) 1110-1118. https://doi.org/10.26872/jmes.2018.9.4.122

V.T. Le, T.K.N. Tran, D.L. Tran, H.S. Le, V.D. Doan, Q.D. Bui, H.T. Nguyen, J. Dispers. Sci. Technol. 40 (2019) 1761-1776. https://doi.org/10.1080/01932691.2018.1541414

V.X. Minh, K.T.T. Dung, P.T. Lan, L.T.M. Hanh, N.T. Dung, Vietnam J. Chem. 58 (2020) 358-363. https://doi.org/10.1002/vjch.2019000195

P. Sebastián, E. Gómez, V. Climent, J.M. Feliu, Electrochem. commun. 78 (2017) 51-55. https://doi.org/10.1016/j.elecom.2017.03.020

A. Shishov, A. Bulatov, M. Locatelli, S. Carradori, V. Andruch, Microchem. J. 135 (2017) 33-38. https://doi.org/10.1016/j.microc.2017.07.015

J.G.d.R.d. Costa, J.M. Costa, A.F.d. Almeida Neto, Metals, 12 (2022) 2095. https://doi.org/10.3390/met12122095

D.T. Le, T.P.T. Le, H.T. Do, H.T. Vo, N.T. Pham, T.T. Nguyen, H.T. Cao, P.T. Nguyen, T.M.T. Dinh, H.V. Le, D.L. Tran, J. Chem. 2019 (2019). https://doi.org/10.1155/2019/8620181

N. Gupta, A.K. Kushwaha, M.C. Chattopadhyaya, J. Taiwan Inst. Chem. Eng. 43 (2012) 125–131. https://doi.org/10.1016/j.jtice.2011.07.009

Y. Si, J. Hou, H. Yin, A. Wang, J. Nanosci. Nanotechnol. 18 (2018) 3484-3491. https://doi.org/10.1166/jnn.2018.14631

Q. Rayée, T. Doneux, C. Buess-Herman, Electrochim. Acta 237 (2017) 127-132.

https://doi.org/10.1016/j.electacta.2017.03.182

W. Dou, Z. Deng, J. Fan, Q. Lin, Y. Wu, Y. Ma, Z. Li, Appl. Clay Sci. 229 (2022) 106693. https://doi.org/10.1016/j.clay.2022.106693

R. Foroutan, S.J. Peighambardoust, A. Ahmadi, A. Akbari, S. Farjadfard, B. Ramavandi, J. Environ. Chem. Eng. 9 (2021) 105709. https://doi.org/10.1016/j.jece.2021.105709

Y. Feng, J.L. Gong, G.M. Zeng, Q.Y. Niu, H.Y. Zhang, C.G. Niu, J.H. Deng, M. Yan, J. Chem. Eng. 162 (2010) 487-494. https://doi.org/10.1016/j.cej.2010.05.049

Published

30-03-2024

Issue

Section

Full Articles

How to Cite

Research on adsorption – desorption the ability of hydroxyapatite for Co2+ ions and recovery cobalt by electrochemical deposition. (2024). Vietnam Journal of Catalysis and Adsorption, 13(1), 111-116. https://doi.org/10.62239/jca.2024.019

Share

Funding data

Most read articles by the same author(s)

Similar Articles

1-10 of 361

You may also start an advanced similarity search for this article.