Synthesis of Fe-MIL-101 material and evaluation of photocatytic activity under visible light
Abstract
In the present work, results synthesis of Fe-MIL-101 material and evaluation of photocatytic activity under visible light. Characterization of Fe-MIL-101 was investigated by using techniques including X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), IR spectra and UV-visible absorption spectrometer. Evaluation of the photocatalytic activity of Fe-MIL-101 material on the conversion of blue methylen solution under lighting and sunlight conditions.
Downloads
References
D.M. Hedstrand, W.H. Kruizinga, R.M. Kellogg, Light induced and dye accelerated reductions of phenacyl onium salts by 1,4-dihydropyridines, Tetrahedron Lett. 19 (1978) 1255–1258.
J. Wang, C. Wang, W. Lin, Metal − Organic Frameworks for Light Harvesting and Photocatalysis, Catalysis. 2 (2012) 2630–2640.
H. Garcia, M. Alvaro, E. Carbonell, B. Ferrer, F.X.L. i Xamena, Semiconductor Behavior of a Metal-Organic Framework ( MOF ), Chem. Eur. J. 13 (2007) 5106–5112.
B. Chen, M.C. Das, H. Xu, Z. Wang, G. Srinivas, W. Zhou, Y.-F. Yue, V.N. Nesterov, G. Qian, A Zn4O-containing doubly interpenetrated porous metal-organic framework for photocatalytic decomposition of methyl orange, Chem. Commun. 47 (2011) 11715–11717.
R. Bibi, Q. Shen, L. Wei, D. Hao, N. Li, J. Zhou, Hybrid BiOBr/UiO-66-NH2composite with enhanced visible-light driven photocatalytic activity toward RhB dye degradation, RSC Adv. 8 (2018) 2048–2058.
Xin-Ping, L. Gagliardi, and D.G. Truhlar, Cerium Metal–Organic Framework for Photocatalysis, J. Am. Chem. Soc. 140 (2018) 7904–7912.
Z. Saedi, S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, MIL-101 metal-organic framework: A highly efficient heterogeneous catalyst for oxidative cleavage of alkenes with H2O2, Catal. Commun. 17 (2012) 18–22.
C. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Chemistry: A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science (80-. ). 309 (2005) 2040–2042.
Y.K. Hwang, D.Y. Hong, J.S. Chang, H. Seo, M. Yoon, J. Kim, S.H. Jhung, C. Serre, G. Férey, Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101, Appl. Catal. A Gen. 358 (2009) 249–253.
Q. Liu, L. Ning, S. Zheng, M. Tao, Y. Shi, Y. He, Adsorption of Carbon Dioxide by MIL-101(Cr): Regeneration conditions and influence of flue gas contaminants, Sci. Rep. 3 (2013) 1–6.
R. Fazaeli, H. Aliyan, M. Masoudinia, Z. Heidari, Building MOF Bottles (MIL-101 Family as Heterogeneous Single-Site Catalysts) Around H3PW12O40 Ships: An Efficient Catalyst for Selective Oxidation of Sulfides to Sulfoxides and Sulfones., J. Mater. Chem. Eng. 2 (2014) 46–55.
Z. Naghdi, R. Farzaeli, H. Aliyan, Building MOF bottles (MIL-101 family as heterogeneous single-site catalysts) around Fe3O4 ships: A highly efficient and magnetically separable catalyst for oxidation of alcohols, Russ. J. Appl. Chem. 88 (2015) 1343–1350.
M. Saikia, D. Bhuyan, L. Saikia, Facile synthesis of Fe 3 O4 nanoparticles on metal organic framework MIL-101(Cr): characterization and catalytic activity, New J. Chem. 39 (2015) 64–67.
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.