Electrochemical grafting assisted modification of graphite surface by 3,4,5-trimethoxybenzenediazonium based monolayer
DOI:
https://doi.org/10.51316/jca.2023.031Keywords:
Functionalization, Electrochemical grafting, Diazonium, Thin film, GraphiteAbstract
A conventional route to create such nanoscale electronic devices using the autonomous ordering and assembly of organic molecules on atomically well-defined surfaces has been proposed. However, these thin films are unstable in realistic environments due to weak interaction between the organic molecules and crystal surfaces. Therefore, enhancing the interfacial interaction between them is assigned as the key approach to extend the scope of application of these promising monolayer thin films. In this work, we demonstrate the formation of an organic monolayer, namely 3,4,5-trimethoxy diazonium (3,4,5-TMD), on a Highly Ordered Pyrolytic Graphite (HOPG) electrode by using the power of electrochemical method. The structural properties at the nano scale as well as the bonding nature between 3,4,5-TMD adlayer and HOPG electrode at the interface were investigated by a combination of cyclic voltammetry (CV), atomic force spectroscopy (AFM) and Raman spectroscopy. As a result, the 3,4,5-TMD molecules covalently bond to carbon atoms located at the HOPG interface for forming a monolayer with its thickness of 0.92 ± 0.02 nm. This finding opens a partway to apply the electrochemical grafting for covalent functionalization of 2D materials on HOPG and other metallic surfaces.
Downloads
References
Olabi, A. G.; Abdelkareem, M. A.; Wilberforce, T.; Sayed, E. T., Renewable and Sustainable Energy Reviews 135 (2021) 110026. https://doi.org/10.1016/j.rser.2020.110026
Tiwari, S. K.; Sahoo, S.; Wang, N.; Huczko, Journal of Science: Advanced Materials and Devices 5 1 (2020) 10- 29. https://doi.org/10.1016/j.jsamd.2020.01.006
Phillipson, R.; Lockhart de la Rosa, C. J.; Teyssandier, J.; Walke, P.; Waghray, D.; Fujita, Y.; Adisoejoso, J.; Mali, K. S.; Asselberghs, I.; Huyghebaert, C.; Uji-i, H.; De Gendt, S.; De Feyter, S., Nanoscale 8 (48) (2016) 20017-20026. https://doi.org/10.1039/C6NR07912A
Avouris, P., Nano Letters 10 (11) (2010) 4285-4294. https://doi.org/10.1021/nl102824h
Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S., and Govindaraj, Angew. Chem. 48 (2009) 7752–7777. https://doi.org/10.1002/anie.200901678
González, R., Mali, K., De Feyter, S. Covalent Chemistry and Materials Science (2022). https://doi.org/10.1007/978-3-031-04398-7_8
G. Ambrosio, A. Brown, L. Daukiya, G. Drera, G. Di Santo, L. Petaccia, S. De Feyter, L. Sangaletti, S. Pagliara, Nanoscale 12 (2020) 9032-9037. https://doi.org/10.1039/D0NR01186J
R. Steeno, M.C. Rodríguez González, S. Eyley, W. Thielemans, K.S. Mali, S. De Feyter, Covalent Functionalization of Carbon Surfaces: Diaryliodonium versus Aryldiazonium Chemistry, Chemistry of Materials, 32 (2020) 5246-5255. https://doi.org/10.1021/acs.chemmater.0c01393
K. Sampathkumar, V. Diez-Cabanes, P. Kovaricek, E. del Corro, M. Bouša, J. Hošek, M. Kalbac, O. Frank, The Journal of Physical Chemistry C, 123 (2019) 22397-22402. https://doi.org/10.1021/acs.jpcc.9b06516
Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J. M.; Colchero, J.; Gomez-Herrero, J.; Baro, Rev. Sci. Instrum. 78 (2007) 8. https://doi.org/10.1063/1.2432410
Singh, A. K.; Yakobson, B. I., Nano Lett. 9 (2009) 1540-1543. https://doi.org/10.1021/nl803622c
Sessi, P.; Guest, J. R.; Bode, M.; Guisinger, N. P., Nano Lett. 9 (2009) 4343-4347. https://doi.org/10.1021/nl902605t
Ma, H. F.; Lee, L.; Brooksby, P. A.; Brown, S. A.; Fraser, S. J.; Gordon, K. C.; Leroux, Y. R.; Hapiot, P.; Downard, J. Phys. Chem. C 118 (2014) 5820–5826. https://doi.org/10.1021/jp411826s
De Andres, P. L.; Verges, J. A., Appl. Phys. Lett. 93 (2008) 3. https://doi.org/10.1063/1.3010740
Ferrari, A. C.; Robertson, Phys. Rev. B 61 (2000) 14095–14107. https://doi.org/10.1103/PhysRevB.61.14095
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2020-DQN-04