Electrochemical grafting assisted modification of graphite surface by 3,4,5-trimethoxybenzenediazonium based monolayer

Authors

  • Huynh Thi Mien Trung Quy Nhon University Author
  • Tran Nam Trung Quy Nhon University Author
  • Le Thi Ngoc Loan Quy Nhon University Author
  • Nguyen Thi Xuan Huynh Quy Nhon University Author
  • Phan Thanh Hai Quy Nhon University Author

DOI:

https://doi.org/10.51316/jca.2023.031

Keywords:

Functionalization, Electrochemical grafting, Diazonium, Thin film, Graphite

Abstract

A conventional route to create such nanoscale electronic devices using the autonomous ordering and assembly of organic molecules on atomically well-defined surfaces has been proposed. However, these thin films are unstable in realistic environments due to weak interaction between the organic molecules and crystal surfaces. Therefore, enhancing the interfacial interaction between them is assigned as the key approach to extend the scope of application of these promising monolayer thin films. In this work, we demonstrate the formation of an organic monolayer, namely 3,4,5-trimethoxy diazonium (3,4,5-TMD), on a Highly Ordered Pyrolytic Graphite (HOPG) electrode by using the power of electrochemical method. The structural properties at the nano scale as well as the bonding nature between 3,4,5-TMD adlayer and HOPG electrode at the interface were investigated by a combination of cyclic voltammetry (CV), atomic force spectroscopy (AFM) and Raman spectroscopy. As a result, the 3,4,5-TMD molecules covalently bond to carbon atoms located at the HOPG interface for forming a monolayer with its thickness of 0.92 ± 0.02 nm. This finding opens a partway to apply the electrochemical grafting for covalent functionalization of 2D materials on HOPG and other metallic surfaces.

Downloads

Download data is not yet available.

References

Olabi, A. G.; Abdelkareem, M. A.; Wilberforce, T.; Sayed, E. T., Renewable and Sustainable Energy Reviews 135 (2021) 110026. https://doi.org/10.1016/j.rser.2020.110026

Tiwari, S. K.; Sahoo, S.; Wang, N.; Huczko, Journal of Science: Advanced Materials and Devices 5 1 (2020) 10- 29. https://doi.org/10.1016/j.jsamd.2020.01.006

Phillipson, R.; Lockhart de la Rosa, C. J.; Teyssandier, J.; Walke, P.; Waghray, D.; Fujita, Y.; Adisoejoso, J.; Mali, K. S.; Asselberghs, I.; Huyghebaert, C.; Uji-i, H.; De Gendt, S.; De Feyter, S., Nanoscale 8 (48) (2016) 20017-20026. https://doi.org/10.1039/C6NR07912A

Avouris, P., Nano Letters 10 (11) (2010) 4285-4294. https://doi.org/10.1021/nl102824h

Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S., and Govindaraj, Angew. Chem. 48 (2009) 7752–7777. https://doi.org/10.1002/anie.200901678

González, R., Mali, K., De Feyter, S. Covalent Chemistry and Materials Science (2022). https://doi.org/10.1007/978-3-031-04398-7_8

G. Ambrosio, A. Brown, L. Daukiya, G. Drera, G. Di Santo, L. Petaccia, S. De Feyter, L. Sangaletti, S. Pagliara, Nanoscale 12 (2020) 9032-9037. https://doi.org/10.1039/D0NR01186J

R. Steeno, M.C. Rodríguez González, S. Eyley, W. Thielemans, K.S. Mali, S. De Feyter, Covalent Functionalization of Carbon Surfaces: Diaryliodonium versus Aryldiazonium Chemistry, Chemistry of Materials, 32 (2020) 5246-5255. https://doi.org/10.1021/acs.chemmater.0c01393

K. Sampathkumar, V. Diez-Cabanes, P. Kovaricek, E. del Corro, M. Bouša, J. Hošek, M. Kalbac, O. Frank, The Journal of Physical Chemistry C, 123 (2019) 22397-22402. https://doi.org/10.1021/acs.jpcc.9b06516

Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J. M.; Colchero, J.; Gomez-Herrero, J.; Baro, Rev. Sci. Instrum. 78 (2007) 8. https://doi.org/10.1063/1.2432410

Singh, A. K.; Yakobson, B. I., Nano Lett. 9 (2009) 1540-1543. https://doi.org/10.1021/nl803622c

Sessi, P.; Guest, J. R.; Bode, M.; Guisinger, N. P., Nano Lett. 9 (2009) 4343-4347. https://doi.org/10.1021/nl902605t

Ma, H. F.; Lee, L.; Brooksby, P. A.; Brown, S. A.; Fraser, S. J.; Gordon, K. C.; Leroux, Y. R.; Hapiot, P.; Downard, J. Phys. Chem. C 118 (2014) 5820–5826. https://doi.org/10.1021/jp411826s

De Andres, P. L.; Verges, J. A., Appl. Phys. Lett. 93 (2008) 3. https://doi.org/10.1063/1.3010740

Ferrari, A. C.; Robertson, Phys. Rev. B 61 (2000) 14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

Published

30-06-2023

Issue

Section

Full Articles

How to Cite

Electrochemical grafting assisted modification of graphite surface by 3,4,5-trimethoxybenzenediazonium based monolayer. (2023). Vietnam Journal of Catalysis and Adsorption, 12(2), 61-64. https://doi.org/10.51316/jca.2023.031

Share

Funding data

Similar Articles

1-10 of 73

You may also start an advanced similarity search for this article.