Study on synthesis and the CO2 electrochemical reduction of Cu nanomaterials
DOI:
https://doi.org/10.51316/jca.2023.023Keywords:
nano Cu material, electrocatalyst, CO2, reduction, electrochemical deposition, time dependenceAbstract
Electrochemical reduction is considered as one of the simple and effective methods with respect to the CO2 conversion to value-added chemicals. With this regard, on the study of novel catalysts plays a crucial role for overcoming the chemical inertness and enhance the CO2 conversion efficiency. In this paper, nano Cu based highly efficient electrocatalysts for CO2 redution are developed by electrochemical deposition from the Cu2+ containing electrolyte. Crystalline structure and morphology of all synthesized Cu nanomaterials are characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Accordingly, all obtained Cu nanomaterials consist of both nanocuboid and dendritic features. The catalytic capability for CO2 reduciton of the fabricated Cu nanomaterials is determined upon using linear sweep voltametry (LSV) method. As a result, the sample electrodeposited for 240s exhibits the highest catalytic characteristics among others with the approximate efficiency of 85 % at the reduction potential of E = -0.5 V so với Ag/AgCl.
Downloads
References
W.F. Lamb, T. Wiedmann, J. Pongratz, R. Andrew, M. Crippa, J.G.J. Olivier, D. Wiedenhofer, G. Mattioli, A.A. Khourdajie, J. House, S. Pachauri, M. Figueroa, Y. Saheb, R. Slade, K. Hubacek, L. Sun, S.K. Ribeiro, S. Khennas, S. de la Rue du Can, L. Chapungu, S.J. Davis, I. Bashmakov, H. Dai, S. Dhakal, X. Tan, Y. Geng, B. Gu, J. Minx, Environmental Research Letters 16 (2021) 073005. https://10.1088/1748-9326/abee4e.
F. Perera, Int J Environ Res Public Health 15 (2017) 16. https://10.3390/ijerph15010016.
S. Fawzy, A.I. Osman, J. Doran, D.W. Rooney, Environmental Chemistry Letters 18 (2020) 2069-2094. https://10.1007/s10311-020-01059-w.
P. Kelemen, S.M. Benson, H. Pilorgé, P. Psarras, J. Wilcox, Frontiers in Climate 1 (2019). https://10.3389/fclim.2019.00009
S.Ó. Snæbjörnsdóttir, B. Sigfússon, C. Marieni, D. Goldberg, S.R. Gislason, E.H. Oelkers, Nature Reviews Earth & Environment 1 (2020) 90-102. https://10.1038/s43017-019-0011-8.
A. Bogaerts, G. Centi, Frontiers in Energy Research 8 (2020). https://10.3389/fenrg.2020.00111.
G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Chemical Society Reviews 50 (2021) 4993-5061. https://10.1039/D0CS00071J.
S. Xu, H. Chen, C. Hardacre, X. Fan, Journal of Physics D: Applied Physics 54 (2021) 233001. https://10.1088/1361-6463/abe9e1.
S. Dongare, N. Singh, H. Bhunia, P.K. Bajpai, A.K. Das, ChemistrySelect 6 (2021) 11603-11629. https://10.1002/slct.202102829.
S. Jin, Z. Hao, K. Zhang, Z. Yan, J. Chen, Angewandte Chemie International Edition 60 (2021) 20627-20648. https://10.1002/ange.202101818.
W. Ye, X. Guo, T. Ma, Chemical Engineering Journal 414 (2021) 128825. https://10.1016/j.cej.2021.128825.
V. Kumaravel, J. Bartlett, S.C. Pillai, ACS Energy Letters 5 (2020) 486-519. https://10.1021/acsenergylett.9b02585.
P. Ding, T. Jiang, N. Han, Y. Li, Materials Today Nano 10 (2020) 100077. https://10.1016/j.mtnano.2020.100077.
R. Kamata, H. Kumagai, Y. Yamazaki, M. Higashi, R. Abe, O. Ishitani, Journal of Materials Chemistry A 9 (2021) 1517-1529. https://10.1039/D0TA07351B.
B. Zhou, P. Ou, N. Pant, S. Cheng, S. Vanka, S. Chu, R.T. Rashid, G. Botton, J. Song, Z. Mi, Proceedings of the National Academy of Sciences 117 (2020) 1330-1338. https://10.1073/pnas.1911159117.
A. Abdelwahab, F. Carrasco-Marín, A.F. Pérez-Cadenas, Materials 13 (2020) 3531. https://10.3390/ma13163531.
T.N. Nguyen, M. Salehi, Q.V. Le, A. Seifitokaldani, C.T. Dinh, ACS Catalysis 10 (2020) 10068-10095. https://10.1021/acscatal.0c02643.
F. Franco, C. Rettenmaier, H.S. Jeon, B. Roldan Cuenya, Chemical Society Reviews 49 (2020) 6884-6946. https://10.1039/D0CS00835D.
B. Shan, S. Vanka, T.-T. Li, L. Troian-Gautier, M.K. Brennaman, Z. Mi, T.J. Meyer, Nature Energy, 4 (2019) 290-299. https://10.1038/s41560-019-0345-y.
H.-L. Wu, X.-B. Li, C.-H. Tung, L.-Z. Wu, Advanced Materials 31 (2019) 1900709. https://10.1002/adma.201900709.
S. Kreft, D. Wei, H. Junge, M. Beller, EnergyChem 2 (2020) 100044. https://10.1016/j.enchem.2020.100044.
H.-L. Zhu, J.-R. Huang, X.-W. Zhang, C. Wang, N.-Y. Huang, P.-Q. Liao, X.-M. Chen, ACS Catalysis 11 (2021) 11786-11792. https:// 10.1021/acscatal.1c02980.
A. Engelbrecht, C. Uhlig, O. Stark, M. Hämmerle, G. Schmid, E. Magori, K. Wiesner-Fleischer, M. Fleischer, R. Moos, Journal of The Electrochemical Society 165 (2018) J3059-J3068. https://10.1149/2.0091815jes.
A. Bagger, W. Ju, A.S. Varela, P. Strasser, J. Rossmeisl, ACS Catalysis 9 (2019) 7894-7899. https://10.1021/acscatal.9b01899.
G.L. De Gregorio, T. Burdyny, A. Loiudice, P. Iyengar, W.A. Smith, R. Buonsanti, ACS Catalysis 10 (2020) 4854-4862. https://10.1021/acscatal.0c00297.
T.H. Phan, K. Banjac, F.P. Cometto, F. Dattila, R. García-Muelas, S.J. Raaijman, C. Ye, M.T.M. Koper, M. T. N. López, M. Lingenfelder, Nano Lett. 21 (2021) 2059-2065. https://10.1021/acs.nanolett.0c04703.