A comparative study on the VOCs sensing behaviors of various ZnO nanostructures

Authors

  • Nguyen Minh Vuong Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Dinh Tien Dung Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Hoang Nhat Hieu Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Nguyen Van Nghia Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Nguyen Ngoc Khoa Truong Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Le Thi Ngoc Loan Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Phan Thanh Hai Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author

DOI:

https://doi.org/10.51316/jca.2020.080

Keywords:

VOCs sensing, ZnO, nanostructure, open space, electrospinning

Abstract

The volatile organic compounds (VOCs) sensing layers were studied using ZnO nanomaterials with different morphologies including hierarchical nanostructure (ZnO-H), nanorods (ZnO-NRs), commercial nanoparticles (ZnO-CNPs) and wet chemical synthesized nanoparticles (ZnO-HNPs). ZnO hierarchical structure was fabricated by an electrospinning technique followed by hydrothermal process. ZnO vertical nanorods structure was fabricated by hydrothermal method, while ZnO nanoparticles based sensors were prepared from commercial powder and wet chemical method. The morphology and properties of the fabricated samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). VOCs sensing responses toward acetone, ethanol and methanol with respect to altered ZnO nanostructures was systematically compared at different working temperatures. The enhanced response at low working temperatures induced by the open space hierarchical structure was observed. The VOCs sensing mechanisms of the ZnO nanostructures based sensing layer were also explained and discussed in detail.

Downloads

Download data is not yet available.

References

F.M. Li, G. Hsieh, S. Dalal, M.C. Newton, J.E. Stott, P. Hiralal, A. Nathan, P.A. Warburton, H.E. Unalan, P. Beecher, A.J. Flewitt, I. Robinson, G. Amaratunga, W.I. Milne, IEEE Transactions on Electron Devices 55 (2008) 3001. https://doi.org/10.1109/ted.2008.2005180

E. Çetinörgü, S. Goldsmith, Journal of Physics D: Applied Physics 40 (2007) 5220.

R. Dom, H.G. Kim, P.H. Borse, CrystEngComm 16 (2014) 2432. https://doi.org/10.1039/c3ce42058b

M.R. Alenezi, S.J. Henley, N.G. Emerson, S.R.P. Silva, Nanoscale 6 (2014) 235. https://doi.org/10.1039/c3nr04519f

W.J. Moon, J.H. Yu, G.M. Choi, Sensors and Actuators B: Chemical 87 (2002) 464. https://doi.org/10.1016/S0925-4005(02)00299-X

J. Huang, Y. Dai, C. Gu, Y. Sun, J. Liu, Journal of Alloys and Compounds 575 (2013) 115. https://doi.org/10.1016/j.jallcom.2013.04.094

N.M. Vuong, N.M. Hieu, H.N. Hieu, H. Yi, D. Kim, Y.-S. Han, M. Kim, Sensors and Actuators B: Chemical 192 (2014) 327. https://doi.org/10.1016/j.snb.2013.10.117

X. Liu, J. Sun, X. Zhang, Sensors and Actuators B: Chemical 211 (2015) 220. https://doi.org/10.1016/j.snb.2015.01.083

N. Hongsith, C. Viriyaworasakul, P. Mangkorntong, N. Mangkorntong, S. Choopun, Ceramics International 34 (2008) 823. https://doi.org/10.1016/j.ceramint.2007.09.099

Y. Li, J. Gong, G. He, Y. Deng, Materials Chemistry and Physics 134 (2012) 1172. http://dx.doi.org/10.1016/j.matchemphys.2012.04.014

Y. Mun, S. Park, S. An, C. Lee, H.W. Kim, Ceramics International 39 (2013) 8615. http://dx.doi.org/10.1016/j.ceramint.2013.04.035

I. Karaduman, D.E. Yıldız, M.M. Sincar, S. Acar, Materials Science in Semiconductor Processing 28 (2014) 43. http://dx.doi.org/10.1016/j.mssp.2014.04.011

N.M. Vuong, H. Jung, D. Kim, H. Kim, S.-K. Hong, Journal of Materials Chemistry 22 (2012) 6716. https://doi.org/10.1039/C2JM15971F

N.M. Vuong, N.D. Chinh, B.T. Huy, Y.-I. Lee, Scientific Reports 6 (2016) 26736. 10.1038/srep26736

https://www.nature.com/articles/srep26736#supplementary-information

N. Barsan, U. Weimar, Journal of Electroceramics 7 (2001) 143. https://doi.org/10.1023/a:1014405811371

X. Ma, X. Zhou, Y. Gong, N. Han, H. Liu, Y. Chen, RSC Advances 7 (2017) 34609. https://doi.org/ 10.1039/c7ra04437b

L. Shi, A.J.T. Naik, J.B.M. Goodall, C. Tighe, R. Gruar, R. Binions, I. Parkin, J. Darr, Langmuir 29 (2013) https://doi.org/10603. 10.1021/la402339m

P. Rai, Y.-S. Kim, H.-M. Song, M.-K. Song, Y.-T. Yu, Sensors and Actuators B: Chemical 165 (2012) 133. https://doi.org/10.1016/j.snb.2012.02.030

A.Z. Sadek, W. Wlodarski, K. Kalantar-zadeh, S. Choopun, ZnO Nanobelt Based Conductometric H2 and NO2 Gas Sensors, SENSORS, 2005 IEEE, (2005) 1326.

S. Bai, L. Chen, S. Chen, R. Luo, D. Li, A. Chen, C.C. Liu, Sensors and Actuators B: Chemical 190 (2014) 760. https://doi.org/10.1016/j.snb.2013.09.032

Y.V. Kaneti, J. Yue, X. Jiang, A. Yu, The Journal of Physical Chemistry C 117 (2013) 13153. https://doi.org/10.1021/jp404329q

Published

31-12-2020

Issue

Section

Full Articles

How to Cite

A comparative study on the VOCs sensing behaviors of various ZnO nanostructures. (2020). Vietnam Journal of Catalysis and Adsorption, 9(4), 116-121. https://doi.org/10.51316/jca.2020.080

Share

Most read articles by the same author(s)

Similar Articles

1-10 of 52

You may also start an advanced similarity search for this article.