Electrocatalytic activity for dopamine of silver nanoparticle onto graphene/poly(1,8-diaminonaphthalene) electrodes
DOI:
https://doi.org/10.51316/jca.2020.018Keywords:
Dopamine, Electrocatalytic, Silver nanoparticles, graphene, poly(1,8-diaminonaphthalene)Abstract
In this research, we report on the synthesis and electrochemical characterization of a poly(1,8-diaminonaphthalene)/graphene composite film which is capable to adsorb Ag+ ions toward to the dopamine sensing application. The present of graphene significantly improved the structural morphology and electrochemical activities of the pristine polymer, the adsorption capacity for Ag+ ions and the conductivities of the composite were enhanced. The graphene/poly(1,8-diaminonaphthalene)-Ag modified glassy carbon electrode was used to the ability of electrocatalytic activity dopamine in phosphate buffer solution by differential pulse voltammetry. The results open up the path for designing other dopamine sensing based on our novel approach.
Downloads
References
M. Naseri, L. Fotouhi, A. Ehsani, Chem. Rec. 18 (2018) 599. https://doi.org/10.1002/tcr. 201700101
V. Sethumadhavan, S. Rudd, E. Switalska, K. Zuber, P. Teasdale, D. Evans, BMC Materials 1 (2019) 4. https://doi.org/10.1186/s42833-019-0001-7
J. Sołoducho, J. Cabaj, in: F. Yilmaz (Ed.), Conducting Polymers, IntechOpen, 2016. https://doi.org/10.5772 /61723
B.J. Pałys, M. Skompska, K. Jackowska, J. Electroana. Chem. 433 (1997) 41. https://doi.org/10.1016/S0022-0728(97)00144-7
K. Jackowska, A. Kudelski, J. Bukowska, Materials Science Forum 191 (1995) 247. https://doi.org/10.4028 /www.scientific.net/MSF.191.247
X.G. Li, M.R. Huang, S.X. Li, Acta Materialia 52 (2004) 5363. https://doi.org/10.1016/j.actamat.2004. 07.042
D.T. Nguyen, L.D. Tran, H. Le Nguyen, B.H. Nguyen, N. Van Hieu, Talanta 85 (2011) 2445. https://doi.org/ 10.1016/j.talanta.2011.07.094
Q. Li, Y. Qian, H. Cui, Q. Zhang, R. Tang, J. Zhai, Chem. Eng. J. 173 (2011) 715. https://doi.org/10.1016/ j.cej.2011.08.035
K.M. Hassan, G.M. Elhaddad, M. AbdelAzzem, Microchimica Acta 186 (2019) 440. https://doi.org/ 10.1007/s00604-019-3552-0
M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110 (2010) 132. https://doi.org/10.1021/cr900070d
G. Kaur, R. Adhikari, P. Cass, M. Bown, P. Gunatillake, RSC Adv. 5 (2015) 37553. https://doi.org/10.1039/ C5RA01851J
H. Vidya, B.E. Kumara Swamy, M. Schell, J. Mol. Liq. 214 (2016) 298. https://doi.org/10.1016/j.molliq. 2015.12.025
J.W. Shin, K.J. Kim, J. Yoon, J. Jo, W.A. El-Said, J.W. Choi, Sensors (Basel) 17 (2017) https://doi.org/2771.10.3390/ s17122771
K. Barman, S. Jasimuddin, RSC Adv. 6 (2016) 99983. https://doi.org/10.1039/C6RA19813A
K. Ghanbari, M. Moloudi, S. Bonyadi, J. Electrochem. Sci. Technol. 10 (2019) 361. https://doi.org/10.33961/jecst. 2019.00080
M. Tagowska, B. Pałys, M. Mazur, M. Skompska, K. Jackowska, Electrochimica Acta 50 (2005) 2363. https://doi.org/10.1016/j.electacta.2004.10.049
A. Nithya, H.L. JeevaKumari, K. Rokesh, K. Ruckmani, K. Jeganathan, K. Jothivenkatachalam, J. Photochem. Photobiol. B 153 (2015) 412. https://doi.org/10.1016/ j.jphotobiol.2015.10.020