A theoretical study on the electronic and optical properties of M-TiO2/ZnO (M=Li, Na, K, Fe) toward application in photocatalysis
DOI:
https://doi.org/10.62239/jca.2024.035Keywords:
TiO2-ZnO composite, metal dopant, photocatalystAbstract
This study employs the tight-binding density functional method GFN1-xTB to investigate the structural and electronic properties of TiO2-ZnO and TiO2-ZnO composite materials modified by Li, Na, K, and Fe metals. Computational analyses reveal the formation of weak covalent bonds between the TiO2 and ZnO components within the composite system. Doping TiO2-ZnO with metals induces significant alterations in the electronic structure, particularly in terms of ionization energy and global electrophilic index. The UV-VIS spectra are calculated using real-time time-dependent density functional theory with xTB Hamiltonians. The obtained results demonstrate minimal impact of metal presence on the absorption spectrum of TiO2-ZnO, but significant influence on the recombination potential of photogenerated charge carriers. It is suggested that Fe/TiO2-ZnO and Li/TiO2-ZnO will demonstrate higher photocatalytic activity than the pristine TiO2-ZnO material.
Downloads
References
C. Cheng, A. Amini, C. Zhu, Z. Xu, H. Song, N.Wang, Scientific Reports 4(1) (2014) 4181. https://doi.org/10.1038/srep04181
D. Chen, H. Zhang, S. Hu, J. Li, The Journal of Physical Chemistry C 112(1) (2007) 117–122. https://doi.org/10.1021/jp077236a.
S. I. Mogal, V.G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi,P. A. Joshi, D. O. Shah, Industrial & Engineering Chemistry Research 53(14) (2014) 5749–5758. https://doi.org/10.1021/ie404230q.
N.K. Pal, C. Kryschi, Chemosphere 144 (2016) 1655–1664. https://doi.org/10.1016/j.chemosphere.2015.10.060
C. Rajeevgandhi, S. Bharanidharan, T. Jayakumar, N. Shailaja, P. Anand, L. Guganathan, C. Ashok Kumar, Solid State Communications 371 (2023) 115256. https://doi.org/10.1016/j.ssc.2023.115256.
P. Golvari, E. Nouri, N. Mohsenzadegan, M. R. Mohammadi, S. O. Martinez-Chapa, New Journal of Chemistry 45(5) (2021) 2470–2477. https://doi.org/10.1039/D0NJ04051G
M. Giahi, S. Saadat Niavol, H.Taghavi, M. Meskinfam, Russian Journal of Physical Chemistry A 89(13) (2015) 2432–2437. https://doi.org/10.1134/s0036024415130154
T.N. Ravishankar, G. Nagaraju, Jairton Dupont, Materials Research Bulletin 78 (2016) 103–111. https://doi.org/10.1016/j.materresbull.2016.02.017
DFTB+ https://dftbplus.org/.
J. Speight, Lange’s Handbook of Chemistry, Seventeenth Edition; McGraw Hill Professional, 2016.
Z. Shuai, W. Li, J.Ren, Y. Jiang, H. Geng, The Journal of Chemical Physics 153(8) (2020) 080902 https://doi.org/10.1063/5.0018312
N. T. T. Ha, P. T. Be, P. T. Lan, N. T. Mo, L. M. Cam, N. N. Ha, RSC Advances 11(27) (2021) 16351–16358. https://doi.org/10.1039/d1ra01237a
S. V. Badalov, R. Wilhelm, W. G. Schmidt, Journal of Computational Chemistry 41 (2020) 1921–1930. https://doi.org/ 10.1002/jcc.26363
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 104.06–2020.48