Synthesis and characterization of NiCoOx mixed nanocatalysts for anion exchanger membrane water electrolysis (AEMWE)
DOI:
https://doi.org/10.51316/jca.2020.028Keywords:
NiCoOx, activity, OER, AEMWE, CatalystAbstract
Anion exchange membrane water electrolysis (AEMWE) is a well developed technology for the conversion of water into hydrogen and oxygen. AEMWE is still a developing technology. One of the major advantages of AEM water electrolysis is the replacement ofconventional noble metal electrocatalysts with low cost transition metal catalysts. In this study, we report characterization of NiCoOx mixed metallic oxides synthesized by the hydrolysis method as anodic electrocatalysts for AEMWE. The mechanisms of the thermal decomposition process of precursors to form mixed metallic oxide powders were studied by means of thermal gravity analysis (TGA), X-ray diffraction (XRD) while transmission electron microscopy (TEM) were used to evaluate the crystallographic structure, morphology and size of catalyst particles. The surface reactivity and stability of these oxides was investigated by cyclic voltammetry (CV) electrochemical method in solution of 1 M KOH. Based on the given results, the good anodic electrocatalyst was found.
Downloads
References
Vatamanu and D. Bedrov, J. Phys. Chem. Lett. 6:18, (2015) 3594-3609.
P.C.K. Vesborg and T.F. Jaramillo, RSC Adv. 2:21, (2012) 7933-7947.
M.I. Hoffert, K. Caldeira, G. Benford, D.R. Criswell, C. Green, H. Herzog, A.K. Jain, H.S. Kheshgi, K.S. Lackner and J.S. Lewis, Science, 298:5595, (2002) 981-987. https://doi.org/10.1557/opl.2013.1085
Maccelo Carmo, David L. Fritz, Jurgen Mergel, Detlef Stolten, International journal of hydrogen energy. 38 (2013) 4901-4934. https://doi.org/10.1016/j.ijhydene.2013.01.151
Sulay Saha, Koshal Kishor, Sri Sivakumar and Pala S. Raj Ganesh, Journal of the Indian Institute of Science, A Multidisciplinary Reviews Journal. 94:4 (2016) 325-350.
I. Vincent, D. Bessarabov, Renewable and Sustainable Energy Reviews, 81 (2018) 1690–1704. http://doi.org/10.1016/j.rser.2017.05.258
M. K. Cho, A. Lim, S. Y. Lee, H. J. Kim, S. J. Yoo, Y. E Sung, H. S. Park, and J. H. Jang, J. Electrochem. Sci. Technol., 8:3 (2017) 183-196. https://doi.org/10.5229/JECST.2017.8.3.183
C.C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi. Angew Chem Int Ed, 53 (2014) 1378–81.
J. Parrondo, C. G. Arges, M. Niedzwiecki, E. B. Anderson, K. E. Ayers, V. Ramani, RSC Adv. 4 (2014) 9875–9879. https://doi.org/10.1039/C3RA46630B
L. Xiao, S. Zhang, J. Pan, C. Yang, M. He, L. Zhuang, Energy Environ Sci. 5 (2012) 7869–7871. https://doi.org/10.1039/C2EE22146B
M. Gong, H. Dai, Nano Res. 8 (2014) 23–23. https://doi.org/10.1007/s12274-014-0591-z
M. Alagiri, S. Ponnusamy, C. Muthamizhchelvam J Mater Sci: mater Electron. 23 (2012) 728-732. `