Modifying platinum microelectrodes with electrochemically reduced graphene oxide for application in electrochemical ascorbic acid sensor

Authors

  • Tran Thi Luyen School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam
  • Tran Vinh Hoang School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam

DOI:

https://doi.org/10.51316/jca.2023.034

Keywords:

Electrochemically reduced graphene oxide, Electrochemical sensor, Ascorbic acid, Platinum microelectrode, Linear sweep voltammetry

Abstract

Graphene oxide drop-casted on a platinum microelectrode was successfully changed to reduced graphene oxide by using a cyclic voltammetry method. The presence of an electrochemically reduced graphene oxide layer on the platinum electrode was proved by using scanning electron microscopy images, Raman and Fourier-transform infrared spectroscopy spectra. Cyclic voltammetry and linear sweep voltammetry results indicated that the platinum microelectrode modified with electrochemically reduced graphene oxide can be used as an electrochemical sensor for detection of ascorbic acid in aqueous solutions. In a cyclic voltammetry scan and a linear sweep voltammetry curve corresponding to the presence of ascorbic acid, a peak related to the direct oxidation of ascorbic acid appears. The electrochemical sensor based on the electrochemically reduced graphene oxide material works effectively with a detection limit of 0.04 mM, a detection linear range from 0.04 mM to 1.0 mM, a good repeatability, and especially, a rapid detection time thanks to a direct ascorbic acid detection based on the oxidation of ascorbic acid.

Downloads

Download data is not yet available.

References

X. Wang, R. Niessner, D. Tang, D. Knopp, Anal. Chim. Acta 912 (2016) 10-23. https://doi.org/10.1016/j.aca.2016.01.048

S. Chen, Y. F. Cheng, G. Voordouw, Sens. Actuators, B 262 (2018) 860-868. https://doi.org/10.1016/j.snb.2018.02.093

T. L. Tran, T. T. Nguyen, T. T. H. Tran, V. T. Chu, Q. T. Tran, A. T. Mai, Phys. E 93 (2017) 83-86. https://doi.org/10.1016/j.physe.2017.05.019

L. F. Aval, M. Ghoranneviss, G. B. Pour, Heliyon 4 (2018) e00862. https://doi.org/10.1016/j.heliyon.2018.e0086200862

W. Li, R. Fang, Y. Xia, W. Zhang, X. Wang, X. Xia, J. Tu, Batteries. Supercaps 2 (2019) 9-36. https://doi.org/10.1002/batt.201800067

J. Sethi, M. V. Bulck, A. Suhail, M. Safarzadeh, A. Perez-Castillo, G. Pan, Microchim. Acta 187 (2020) 288. https://doi.org/10.1007/s00604-020-04267-x

B. Patella, M. Buscetta, S. Di Vincenzo, M. Ferraro, G. Aiello, C. Sunseri, E. Pace, R. Inguanta, C. Cipollina, Sens. Actuators, B 327 (2021) 128901. https://doi.org/doi.org/10.1016/j.snb.2020.128901

D. T. M. Hue, T. T. Luyen, H. T. L. Giang, T. V. Hoang, Vietnam J. Chem., 60 (2022) 46-52. https://doi.org/10.1002/vjch.202200064

L. T. Tran, H. V. Tran, T. Tran, N. T. Nguyen, D. V. Bui, P. Q. Tran, T. V. Chu, J. Electrochem. Soc. 168 (2021) 057518. https://doi.org/10.1149/1945-7111/ac001b

L. T. Tran, H. V. Tran, H. T. M. Dang, A. V. Nguyen, T. H. Tran, C. D. Huynh, RSC Adv. 11 (2021) 19470-19481. https://doi.org/10.1039/D1RA01301G

H. V. Tran, L. T. Bui, T. T. Dinh, D. H. Le, C. D. Huynh, A. X. Trinh, Mater. Res. Express 4 (2017) 035701. https://doi.org/10.1088/2053-1591/aa6096

N. T. Thuy, P. D. Tam, M. A. Tuan, A.T. Le, L. T. Tam, V. V. Thu, N. V. Hieu, N. D. Chien, Curr. Appl. Phys. 12 (2012) 1553-1560. https://doi.org/10.1016/j.cap.2012.04.035

M. Mitra, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee, Diamond Relat. Mater. 37 (2013) 74-79. https://doi.org/10.1016/j.diamond.2013.05.003

Q. Gong, H. Han, H. Yang, M. Zhang, X. Sun, Y. Liang, Z. Liu, W. Zhang, J. Qiao, J Materiomics. 5 (2019) 313-319. https://doi.org/10.1016/j.jmat.2019.03.004

B. D. Ossonon, D. Bélanger, RSC Adv. 7 (2017) 27224-27234. https://doi.org/10.1039/C6RA28311J

M. Mitra, C. Kulsi, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee, S. Goswami, RSC Adv. 5 (2015) 31039-31048. https://doi.org/10.1039/c5ra01794g

C. Guo, Y. Wang, Y. Zhao, C. Xu, Anal. Methods. 5 (2013) 1644-1647. https://doi.org/10.1039/C3AY00067B

H. V. Tran, B. Piro, S. Reisberg, L. D. Tran, H. T. Duc, M. C. Pham, Biosens. Bioelectron. 49 (2013) 164-169. https://doi.org/10.1016/j.bios.2013.05.007

Published

30-06-2023

Issue

Section

Full Articles

How to Cite

Modifying platinum microelectrodes with electrochemically reduced graphene oxide for application in electrochemical ascorbic acid sensor . (2023). Vietnam Journal of Catalysis and Adsorption, 12(2), 81-86. https://doi.org/10.51316/jca.2023.034

Share

Funding data

Most read articles by the same author(s)

Similar Articles

1-10 of 232

You may also start an advanced similarity search for this article.