Effect of CVD parameters on large area growth of highly crystalline MoS2 thin flakes
DOI:
https://doi.org/10.51316/jca.2021.128Keywords:
MoS2, chemical vapor deposition, field effect transistorAbstract
In this study, we presented a report on effect of growth parameters (seeding promoter, growth temperature, Ar gas flow rate) on the formation of MoS2 monolayer. The morphology and structure of as-grown MoS2 were investigated in detail by optical microscopy, atomic force microscopy, Raman and photoluminesence spectroscopy techniques. The results showed that a highly reproducible growth of dense MoS2 triangular flakes with the size of ~35 µm over large area (~1.5x1 cm2) can be obtained by using a optimized parameters. The MoS2 field effect transistors based on the as-grown MoS2 exhibited carrier mobility of 0.5–2 cm2V−1s−1 and On/Off ratio of ~104. Our results can provide a useful information to realize large area, high quality of MoS2 for real electronic applications.
Downloads
References
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6(3) (2011) 147-150. http://doi.org/10.1038/nnano.2010.279
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat. Nanotechnol. 8(7) (2013) 497-501. http://doi.org/10.1038/nnano.2013.100
T. Pham, G. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, ACS Nano 13(3) (2019) 3196-3205 http://doi.org/10.1021/acsnano.8b08778
E. Singh, P. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, ACS Appl. Mater. Interfaces 11(12) (2019) 11061-11105. http://doi.org/10.1021/acsami.8b19859
S. Bertolazzi, J. Brivio, A. Kis, ACS Nano 5(12) (2011) 9703-9709. http://doi.org/10.1021/nn203879f
J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science 331(6017) (2011) 568-571. http://doi.org/10.1126/science.1194975
H. Liu, L. Chen, H. Zhu, Q.-Q. Sun, S.-J. Ding, P. Zhou, D.W. Zhang, Nano Res. 13(6) (2020) 1644-1650. http://doi.org/10.1007/s12274-020-2787-8
D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O.L. Sanchez, Y.-C. Kung, D. Krasnozhon, M.-W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Radenovic, A. Kis, ACS Nano 9(4) (2015) 4611-4620. http://doi.org/10.1021/acsnano.5b01281
Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Small 8(7) (2012) 966-971. http://doi.org/10.1002/smll.201102654
R. Laishram, S. Praveen, M. Guisan, P. Garg, J.S. Rawat, C. Prakash, Integr. Ferroelectr 194(1) (2018) 16-20. http://doi.org/10.1080/10584587.2018.1514889
R. Guan, J. Duan, A. Yuan, Z. Wang, S. Yang, L. Han, B. Zhang, D. Li, B. Luo, CrystEngComm 23(1) (2021) 146-152. http://doi.org/10.1039/D0CE01354D
Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, L.-J. Li, Nanoscale 4(20) (2012) 6637-6641. http://doi.org/10.1039/C2NR31833D
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers GUST.STS.ĐT2020-KHVL01