Manganese oxide derived from spent primary batteries as anode material for lithium-ion batteries

Authors

  • Le Thi Thanh Lieu Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Ho Doan Phuong Thao Faculty of Education, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Nguyen Ngoc Dieu Faculty of Education, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Lam Thi Thuy Kieu Faculty of Education, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Nguyen Tu Quyen Faculty of Education, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • To Thy Thuong Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Tran Thi Truc Quynh Faculty of Education, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author
  • Vo Vien Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh Author

DOI:

https://doi.org/10.62239/jca.2024.066

Keywords:

Manganese oxide, spent primary batteries, recycling, lithium-ion batteries anode

Abstract

The unstoppably increasing demand for renewable energy concomitates the rapid increase in production and the disposal of spent energy storage systems, including primary batteries, which has caused a serious impact on the environment. The feasible and facile procedure for recycling the spent primary batteries could not only reduce this dangerous waste but also provide an economical strategy for sustainable development. This work has applied a facile thermal treatment to recover the manganese oxide from the wasted alkaline batteries from the local market. The obtained materials were used as anode for lithium-ion batteries in a half-cell configuration. The galvanostatic results of the recycled electrodes performed a specific discharge capacity of 102 mAh g-1 after 50 cycles and a good rate capacity of 208 mAh g-1 at a specific current of 1000 mA g-1. These results suggest the potential of research in the future industrial recycling aspect.

Downloads

Download data is not yet available.

References

M. A. Salam, M. A. Gabal, and Y. M. Al Angari, J. Mater. Res. Technol., 18 (2022) 4267–4276. 2022. https://doi.org/10.1016/j.jmrt.2022.04.112

T. Skrzekut, A. Piotrowicz, P. Noga, M. Wędrychowicz, and A. W. Bydałek, Materials (Basel)., 15 (2022) 3966. https://doi.org/10.3390/ma15113966

S. Maryam Sadeghi, J. Jesus, and H. M. V. M. Soares, Waste Manag., 113 (2020) 342–350. https://doi.org/10.1016/j.wasman.2020.05.049

R. Farzana, M. A. Sayeed, J. Joseph, K. Ostrikov, A. P. O’Mullane, and V. Sahajwalla, ChemElectroChem, 7 (2020) 2073–2080. https://doi.org/10.1002/celc.202000422

B. Ebin, M. Petranikova, B. Steenari, and C. Ekberg, Waste Management & Research, 37 (2019) 168-175. https://doi.org/10.1177/0734242X18815966

Y. Selçuk, et al.,Batteries, 5 (2019) 35. https://doi.org/10.3390/batteries5010035

G. Belardi, R. Lavecchia, F. Medici, and L. Piga, Waste Manag., 32 (2012) 1945–1951. https://doi.org/10.1016/j.wasman.2012.05.008

L. Wang, L. Li, H. Wang, J. Yang, F. Wu, and R. Chen, ACS Appl. Energy Mater., 2 (2019) 23. https://doi.org/10.1021/acsaem.9b00839

M. Perachiselvi, M. S. Bagavathy, J. J. Samraj, E. Pushpalaksmi, and G. Annadurai, Appl. Ecol. Environ. Sci., 8 (2020) 273–277. https://doi.org/10.12691/aees-8-5-13

A. Vázquez-Olmos, R. Redón, G. Rodríguez-Gattorno, M.E. Mata-Zamora, F. Morales-Leal, A.L. Fernández-Osorio, J.M. Saniger, J. Colloid Interface Sci., 291 (2005) 175–180. https://doi.org/10.1016/j.jcis.2005.05.005

Y. Wang, C. Hou, X. Lin, H. Jiang, C. Zhang, and G. Liu, Appl. Phys. A Mater. Sci. Process., 127 (2021) 1–7. https://doi.org/10.1007/s00339-021-04428-6

T. Kozawa, F. Kitabayashi, K. Fukuyama, and M. Naito, Sci. Rep., 12 (2022) 1–12. https:// doi: 10.1038/s41598-022-16383-0

Y. Jiang, M. Hu, D. Zhang, and T. Yuan, Nano Energy, 5 (2014) 60–66. https://doi: 10.1016/j.nanoen.2014.02.002

Y. Wang, Journal of Materials Research, 3 (2015) 484-492. https://doi.org/10.1557/jmr.2014.394.

N. Fazila et al., ACS Omega, 5 (2020) 29158–29167. https://doi.org/10.1021/acsomega.0c03888

H. Wang, L. Cui, Y. Yang, and H. S. Casalongue, J. Am. Chem. Soc., 132 (2010) 13978–13980. https://doi.org/10.1021/ja105296a

T. Kozawa, F. Kitabayashi, K. Fukuyama, and M. Naito, Sci. Rep., 11992 (2022) 12. https://doi.org/10.1038/s41598-022-16383-0

Published

30-12-2024

Issue

Section

Full Articles

How to Cite

Manganese oxide derived from spent primary batteries as anode material for lithium-ion batteries. (2024). Vietnam Journal of Catalysis and Adsorption, 13(4), 8-13. https://doi.org/10.62239/jca.2024.066

Share

Funding data

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1-10 of 394

You may also start an advanced similarity search for this article.