Manganese oxide derived from spent primary batteries as anode material for lithium-ion batteries
DOI:
https://doi.org/10.62239/jca.2024.066Keywords:
Manganese oxide, spent primary batteries, recycling, lithium-ion batteries anodeAbstract
The unstoppably increasing demand for renewable energy concomitates the rapid increase in production and the disposal of spent energy storage systems, including primary batteries, which has caused a serious impact on the environment. The feasible and facile procedure for recycling the spent primary batteries could not only reduce this dangerous waste but also provide an economical strategy for sustainable development. This work has applied a facile thermal treatment to recover the manganese oxide from the wasted alkaline batteries from the local market. The obtained materials were used as anode for lithium-ion batteries in a half-cell configuration. The galvanostatic results of the recycled electrodes performed a specific discharge capacity of 102 mAh g-1 after 50 cycles and a good rate capacity of 208 mAh g-1 at a specific current of 1000 mA g-1. These results suggest the potential of research in the future industrial recycling aspect.
Downloads
References
M. A. Salam, M. A. Gabal, and Y. M. Al Angari, J. Mater. Res. Technol., 18 (2022) 4267–4276. 2022. https://doi.org/10.1016/j.jmrt.2022.04.112
T. Skrzekut, A. Piotrowicz, P. Noga, M. Wędrychowicz, and A. W. Bydałek, Materials (Basel)., 15 (2022) 3966. https://doi.org/10.3390/ma15113966
S. Maryam Sadeghi, J. Jesus, and H. M. V. M. Soares, Waste Manag., 113 (2020) 342–350. https://doi.org/10.1016/j.wasman.2020.05.049
R. Farzana, M. A. Sayeed, J. Joseph, K. Ostrikov, A. P. O’Mullane, and V. Sahajwalla, ChemElectroChem, 7 (2020) 2073–2080. https://doi.org/10.1002/celc.202000422
B. Ebin, M. Petranikova, B. Steenari, and C. Ekberg, Waste Management & Research, 37 (2019) 168-175. https://doi.org/10.1177/0734242X18815966
Y. Selçuk, et al.,Batteries, 5 (2019) 35. https://doi.org/10.3390/batteries5010035
G. Belardi, R. Lavecchia, F. Medici, and L. Piga, Waste Manag., 32 (2012) 1945–1951. https://doi.org/10.1016/j.wasman.2012.05.008
L. Wang, L. Li, H. Wang, J. Yang, F. Wu, and R. Chen, ACS Appl. Energy Mater., 2 (2019) 23. https://doi.org/10.1021/acsaem.9b00839
M. Perachiselvi, M. S. Bagavathy, J. J. Samraj, E. Pushpalaksmi, and G. Annadurai, Appl. Ecol. Environ. Sci., 8 (2020) 273–277. https://doi.org/10.12691/aees-8-5-13
A. Vázquez-Olmos, R. Redón, G. Rodríguez-Gattorno, M.E. Mata-Zamora, F. Morales-Leal, A.L. Fernández-Osorio, J.M. Saniger, J. Colloid Interface Sci., 291 (2005) 175–180. https://doi.org/10.1016/j.jcis.2005.05.005
Y. Wang, C. Hou, X. Lin, H. Jiang, C. Zhang, and G. Liu, Appl. Phys. A Mater. Sci. Process., 127 (2021) 1–7. https://doi.org/10.1007/s00339-021-04428-6
T. Kozawa, F. Kitabayashi, K. Fukuyama, and M. Naito, Sci. Rep., 12 (2022) 1–12. https:// doi: 10.1038/s41598-022-16383-0
Y. Jiang, M. Hu, D. Zhang, and T. Yuan, Nano Energy, 5 (2014) 60–66. https://doi: 10.1016/j.nanoen.2014.02.002
Y. Wang, Journal of Materials Research, 3 (2015) 484-492. https://doi.org/10.1557/jmr.2014.394.
N. Fazila et al., ACS Omega, 5 (2020) 29158–29167. https://doi.org/10.1021/acsomega.0c03888
H. Wang, L. Cui, Y. Yang, and H. S. Casalongue, J. Am. Chem. Soc., 132 (2010) 13978–13980. https://doi.org/10.1021/ja105296a
T. Kozawa, F. Kitabayashi, K. Fukuyama, and M. Naito, Sci. Rep., 11992 (2022) 12. https://doi.org/10.1038/s41598-022-16383-0
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
Quỹ Đổi mới sáng tạo Vingroup
Grant numbers VINIF.2023.STS.22