The catalytic activity of manganese oxide catalysts for the toluene oxidation process

Authors

  • Tran Thị Thu Hien School of Environmental Science and Technology, Hanoi University of Science and Technology. Faculty of Natural Sciences , Quy Nhon University Author
  • Nguyen Van Chuc School of Chemical Engineering, Hanoi University of Science and Technology. Tech-Vina., JSC, Binh Dan, Tan Dan, Khoai Chau, Hung Yen, Vietnam Author
  • Ly Bich Thuy School of Environmental Science and Technology, Hanoi University of Science and Technology Author
  • Ta Dinh Quang School of Chemical Engineering, Hanoi University of Science and Technology Author
  • Nguyen Thanh Hung School of Chemical Engineering, Hanoi University of Science and Technology Author
  • Khong Manh Hung Institute for Chemistry and Material, Academy of Military Science and Technology, 17 Hoang Sam, Nghia Do Ward, Cau Giay District, Hanoi, Vietnam Author
  • Le Minh Thang School of Chemical Engineering, Hanoi University of Science and Technology Author

DOI:

https://doi.org/10.51316/jca.2023.039

Keywords:

Manganese oxide catalysts, toluene oxidation

Abstract

Manganese oxide catalysts were prepared by several preparation methods, such as hydrothermal, sol-gel method, and characterized by XRD, BET, H2-TPR, SEM-EDS, and FT-IR. The catalytic activities of catalysts were evaluated through the toluene reaction at the temperature range of 150 oC – 400 oC. Among the catalysts, the @ MnO2 150  catalyst exhibited the highest catalytic activity. It could completely convert toluene into CO2 at 300  oC. The larger specific surface area and lower reduction temperature enhance the higher activity of the @ MnO2 150 catalyst. Thus, the @ MnO2 150  catalyst is chosen to study in the subsequent research.

Downloads

Download data is not yet available.

References

W. G. Tucker, Digital Engineering Library @McGraw-Hill, 2001.

R. M. Heck, R. J. Farrauto, Wiley-Interscience, 2009.

A. C. Lewis, N. Carslaw, P. J. Marriott, R. M. Kinghorn, P. Morrison, A. L. Lee, K. D. Bartle, M. J. Pilling, Nature 405 (2000) 778–781. https://doi.org/10.1038/35015540

I. C. Marcu, A. Urda, I. Popescu, V. Hulea, IGI Global (2017) 59–121. https://doi.org/ 10.4018/978-1-5225-0492-4.ch003

M. J. Molina, F. S. Rowland, Nature 249 (1974) 810–812. https://doi.org/10.1038/249810a0

M. Amann, M. Lutz, J. Hazard. Mater. 78( 2000) 41–62.

https://doi.org/10.1016/s0304-3894(00)00216-8

S. Ascaso, M. E. Gálvez, P. Da Costa, R. Moliner, M. Jesús Lázaro Elorri, Comptes Rendus Chimie 18 (2015) 1007–1012. https://doi.org/10.1016/j.crci.2015.03.017

L. Lazar, H. Koeser, I. Fechete, I. A. Balasanian Revista de Chimie 71 (2020) 79–87. https://doi.org/10.37358/Rev. Chim.1949

B. J. Finlayson-Pitts, J. N. Pitts Jr, Science 276 (1999) 1045–1051. https://doi.org/ 10.1126/science.276.5315.1045.

M. Stoian, L. Lazar, F. Uny, I. Fechete, Revista Chimie 71 (2020) 97–113. https://doi.org/ 10.37358/RC.20.7.8229

M. Alifanti, M. Florea, V. I. Pârvulescu, Applied Catalysis B: Environmental 70 (2007) 400-405. https://doi.org/10.1016/J.APCATB.2005.10.037

A.K. Datye, J. Bravo, T.R. Nelson, P. Atanasova, M. Lyubovsky, L. Pfefferle, App. Catal. A, 2000, 198, 179-196.

Y.H. Chin, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc. 135 (2013) 15425-15442. https://doi.org/10.1021/ja405004m

H. Xiong, K. Lester, T. Ressler, R. Schlögl, L.F. Allard, A.K. Datye, Catal. Lett. 147 (2017) 1095-1103. https://doi.org/10.1007/s10562-017-2023-7

X. Zou, Z. Rui, H. Ji, ACS Catal. 7 (2017) 1615-1625. https://doi.org/10.1021/acscatal.6b03105

M. S. Kamal, S. A. Razzak, M. M. Hossain, Atmos. Environ. 140 (2016) 1117-134. https://doi.org/10.1016/j.atmosenv.2016.05.031

C. Lahousse, A. Bernier, E. Gaigneaux, P. Ruiz P, P. Grange, B. Delmon, Proceedings of the 3rd World Congress on Oxidation Catalysis 1997 777–785. https://doi.org/10.1016/S0167-2991(97)81040-3.

J. Luo., Q. Zhang, A. Huang, S. L. Suib, Micropor. Mesopor. Mat. 35-36 (2000) 209–217. https://doi.org/10.1016/S1387-1811(99)00221-8

F. N. Aguero, A. Scian, B. P. Barbero, L. E. Cadús, Catal. Today 133 – 135 (2008) 493–501. https://doi.org/10.1016/j.cattod.2007.11.044

Q. Sun, L. Li, H. Yan, X. Hong, K.S. Hui, Z. Pan, J. Chem. Eng. 242 (2014) 348–356. https://doi.org/10.1016/j.cej.2013.12.097

N. Huang, Z. Qu, C. Dong, Y. Qin, X. Duan, Appl Catal A 560 (2018) 195–205. https://doi.org/10.1016/j.apcata.2018.05.00

T. T. H. Tran, B. T. Ly, T. M. P. Pham, M. T. Le, Vietnam Journal of Catalysis and Adsorption, 10 (2021). https://doi.org/10.51316/jca.2021.068

Li J., Li L., Wu F., Zhang L., Liu X, Catal. Comm. 31 (2017) 52-56. https://doi.org/10.1016/j.catcom.2012.11.013

V. P. Santos M. F. R. Pereira, J. J. M. Orfao, J. I. Figueiredo, Appl. Catal.B: Environ. 99 (2010) 353-363. https://doi.org/10.1016/j.apcatb.2010.07.007

W. Tang, X. Wu, D. Li, G. Liu, H. Liu, Y. Chen, J. Mater. Chem. A 2 (2014) 2544-2554. https://doi.org/10.1039/C3TA13847J

Q. Ye, J. Zhao, F. Huo, J. Wang, S. Cheng, T. Kang, H. Dai, Catal.Today 175 (2011) 603-609. https://doi.org/10.1016/j.cattod.2011.04.008

V. Sannasi, K. Subbian, J. Mater. Sci.: Mater. Electron. 31 (2020) 17120–17132.

https://doi.org/10.1007/s10854-020-04272-z

W. Yang, Y. Peng, Y. Wang, H. Liu, Z. Su, W. Yang, J. Chen, W. Si, J. Li, Applied Catalysis B: Environmental, 278 (2020). http://doi.org/10.1016/j.apcatb.2020.119279

X. Wang, Y. Li, Chem. Eur. J. 9 (2003) 300-306. https://doi.org/10.1002/chem.200390024

L. Kang, M. Zhang, Z - H. Liu, K. Ooi, Spectrochim. Acta A Mol. Biomol. Spectrosc. 67 (2007) 864–869. https://doi.org/10.1016/j.saa.2006.09.001

Published

30-06-2023

Issue

Section

Full Articles

How to Cite

The catalytic activity of manganese oxide catalysts for the toluene oxidation process. (2023). Vietnam Journal of Catalysis and Adsorption, 12(2), 110-115. https://doi.org/10.51316/jca.2023.039

Share

Most read articles by the same author(s)

Similar Articles

1-10 of 131

You may also start an advanced similarity search for this article.