The catalytic activity of manganese oxide catalysts for the toluene oxidation process
DOI:
https://doi.org/10.51316/jca.2023.039Keywords:
Manganese oxide catalysts, toluene oxidationAbstract
Manganese oxide catalysts were prepared by several preparation methods, such as hydrothermal, sol-gel method, and characterized by XRD, BET, H2-TPR, SEM-EDS, and FT-IR. The catalytic activities of catalysts were evaluated through the toluene reaction at the temperature range of 150 oC – 400 oC. Among the catalysts, the @ MnO2 150 catalyst exhibited the highest catalytic activity. It could completely convert toluene into CO2 at 300 oC. The larger specific surface area and lower reduction temperature enhance the higher activity of the @ MnO2 150 catalyst. Thus, the @ MnO2 150 catalyst is chosen to study in the subsequent research.
Downloads
References
W. G. Tucker, Digital Engineering Library @McGraw-Hill, 2001.
R. M. Heck, R. J. Farrauto, Wiley-Interscience, 2009.
A. C. Lewis, N. Carslaw, P. J. Marriott, R. M. Kinghorn, P. Morrison, A. L. Lee, K. D. Bartle, M. J. Pilling, Nature 405 (2000) 778–781. https://doi.org/10.1038/35015540
I. C. Marcu, A. Urda, I. Popescu, V. Hulea, IGI Global (2017) 59–121. https://doi.org/ 10.4018/978-1-5225-0492-4.ch003
M. J. Molina, F. S. Rowland, Nature 249 (1974) 810–812. https://doi.org/10.1038/249810a0
M. Amann, M. Lutz, J. Hazard. Mater. 78( 2000) 41–62.
https://doi.org/10.1016/s0304-3894(00)00216-8
S. Ascaso, M. E. Gálvez, P. Da Costa, R. Moliner, M. Jesús Lázaro Elorri, Comptes Rendus Chimie 18 (2015) 1007–1012. https://doi.org/10.1016/j.crci.2015.03.017
L. Lazar, H. Koeser, I. Fechete, I. A. Balasanian Revista de Chimie 71 (2020) 79–87. https://doi.org/10.37358/Rev. Chim.1949
B. J. Finlayson-Pitts, J. N. Pitts Jr, Science 276 (1999) 1045–1051. https://doi.org/ 10.1126/science.276.5315.1045.
M. Stoian, L. Lazar, F. Uny, I. Fechete, Revista Chimie 71 (2020) 97–113. https://doi.org/ 10.37358/RC.20.7.8229
M. Alifanti, M. Florea, V. I. Pârvulescu, Applied Catalysis B: Environmental 70 (2007) 400-405. https://doi.org/10.1016/J.APCATB.2005.10.037
A.K. Datye, J. Bravo, T.R. Nelson, P. Atanasova, M. Lyubovsky, L. Pfefferle, App. Catal. A, 2000, 198, 179-196.
Y.H. Chin, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc. 135 (2013) 15425-15442. https://doi.org/10.1021/ja405004m
H. Xiong, K. Lester, T. Ressler, R. Schlögl, L.F. Allard, A.K. Datye, Catal. Lett. 147 (2017) 1095-1103. https://doi.org/10.1007/s10562-017-2023-7
X. Zou, Z. Rui, H. Ji, ACS Catal. 7 (2017) 1615-1625. https://doi.org/10.1021/acscatal.6b03105
M. S. Kamal, S. A. Razzak, M. M. Hossain, Atmos. Environ. 140 (2016) 1117-134. https://doi.org/10.1016/j.atmosenv.2016.05.031
C. Lahousse, A. Bernier, E. Gaigneaux, P. Ruiz P, P. Grange, B. Delmon, Proceedings of the 3rd World Congress on Oxidation Catalysis 1997 777–785. https://doi.org/10.1016/S0167-2991(97)81040-3.
J. Luo., Q. Zhang, A. Huang, S. L. Suib, Micropor. Mesopor. Mat. 35-36 (2000) 209–217. https://doi.org/10.1016/S1387-1811(99)00221-8
F. N. Aguero, A. Scian, B. P. Barbero, L. E. Cadús, Catal. Today 133 – 135 (2008) 493–501. https://doi.org/10.1016/j.cattod.2007.11.044
Q. Sun, L. Li, H. Yan, X. Hong, K.S. Hui, Z. Pan, J. Chem. Eng. 242 (2014) 348–356. https://doi.org/10.1016/j.cej.2013.12.097
N. Huang, Z. Qu, C. Dong, Y. Qin, X. Duan, Appl Catal A 560 (2018) 195–205. https://doi.org/10.1016/j.apcata.2018.05.00
T. T. H. Tran, B. T. Ly, T. M. P. Pham, M. T. Le, Vietnam Journal of Catalysis and Adsorption, 10 (2021). https://doi.org/10.51316/jca.2021.068
Li J., Li L., Wu F., Zhang L., Liu X, Catal. Comm. 31 (2017) 52-56. https://doi.org/10.1016/j.catcom.2012.11.013
V. P. Santos M. F. R. Pereira, J. J. M. Orfao, J. I. Figueiredo, Appl. Catal.B: Environ. 99 (2010) 353-363. https://doi.org/10.1016/j.apcatb.2010.07.007
W. Tang, X. Wu, D. Li, G. Liu, H. Liu, Y. Chen, J. Mater. Chem. A 2 (2014) 2544-2554. https://doi.org/10.1039/C3TA13847J
Q. Ye, J. Zhao, F. Huo, J. Wang, S. Cheng, T. Kang, H. Dai, Catal.Today 175 (2011) 603-609. https://doi.org/10.1016/j.cattod.2011.04.008
V. Sannasi, K. Subbian, J. Mater. Sci.: Mater. Electron. 31 (2020) 17120–17132.
https://doi.org/10.1007/s10854-020-04272-z
W. Yang, Y. Peng, Y. Wang, H. Liu, Z. Su, W. Yang, J. Chen, W. Si, J. Li, Applied Catalysis B: Environmental, 278 (2020). http://doi.org/10.1016/j.apcatb.2020.119279
X. Wang, Y. Li, Chem. Eur. J. 9 (2003) 300-306. https://doi.org/10.1002/chem.200390024
L. Kang, M. Zhang, Z - H. Liu, K. Ooi, Spectrochim. Acta A Mol. Biomol. Spectrosc. 67 (2007) 864–869. https://doi.org/10.1016/j.saa.2006.09.001