Aluminum particles as anode material for lithium ion batteries: effect of particle sizes on the electrochemical behaviours

Authors

  • Duong Duc La Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, VIETNAM
  • Kien Trung Pham Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, VIETNAM
  • Tien Van Hoang School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, VIETNAM
  • Thu Chau Uyen Le University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi, VIETNAM
  • Huyen Thi Nguyen Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, VIETNAM
  • Thien Tri Vu Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, VIETNAM
  • Thanh Huu Le Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, VIETNAM
  • Dung Trung Dang School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, VIETNAM
  • Hang Thi Thu Le School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, VIETNAM
  • Tung Thanh Nguyen Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, VIETNAM
  • Hung Tran Nguyen Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, VIETNAM

DOI:

https://doi.org/10.62239/jca.2024.061

Keywords:

Lithium-ion batteries, anode, aluminum, particles

Abstract

This study presents a preliminary investigation on using pristine aluminum particles as anodes for lithium-ion battery. The microstructural characteristics of aluminum particle samples with sizes from 100 nm (0.1 μm) to 70 µm were analyzed by the SEM and XRD methods. The electrochemical behaviors of the aluminum particles were examined by the cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) measurements. The obtained results demonstrated the distinct lithiation/delithiation features of the aluminum electrodes at the potential couple of around 0.25 V/0.50 V vs. Li/Li+. Moreover, the GCD results also revealed the strong impact of the particle size on the initial capacity and galvanostatic discharge/charge potential profiles of electrode samples. However, aluminum electrodes with the large-sized particles showed dramatical capacity decay after certain cycles, and stabilized at around the specific capacity of 50 mAh g-1 and exhibited capacitive charge/discharge behavior. In contrast, the nano-sized particles aluminum electrodes possessed stable electrochemical performance upon cycling, but with low initial capacities. The results in this work will enrich the knowledge of the aluminum-based anode for LIBs in future works.

Downloads

Download data is not yet available.

References

Hang L. T. T., Huyen N. T. T., Thuy H. T. B., Vietnam Journal of Catalyst and Adsorption 9 (2020) 114–119.

B. M. L. Rao, R. W. Francis, H. A. Christopher, J. Electrochem. Soc. 124 (1977) 1490–1492. https://doi.org/10.1149/1.2133098

E. C. Gay, D. R. Vissers, F. J. Martino, K. E. Anderson, J. Electrochem. Soc. 123 (1976) 1591–1596. https://doi.org/10.1149/1.2132652

C. A. Melendres, C. C. Sy, J. Electrochem. Soc. 125 (1978) 727–731. https://doi.org/10.1149/1.2131536

T. Zheng, J. Zhang, X. Guo, W. Jin, S. T. Boles, Electrochimica Acta 485 (2024) 144127. https://doi.org/10.1016/j.electacta.2024.144127

H. Wang, H. Tan, X. Luo, H. Wang, T. Ma, M. Lv, X. Song, S. Jin, X. Chang, X. Li, J. Mater. Chem. A 8 (2020) 25649–25662. https://doi.org/10.1039/D0TA09762D

B. Sun, Y. Xu, S. Yang, D. Zhang, C. Pei, S. Ni, Mater. Chem. Front. 7 (2023) 2554–2569. https://doi.org/10.1039/D2QM01283A

M. Yoshio, T. Tsumura, N. Dimov, Journal of Power Sources 163 (2006) 215–218. https://doi.org/10.1016/j.jpowsour.2005.12.078

X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, J. Y. Huang, ACS Nano 6 (2012) 1522–1531. https://doi.org/10.1021/nn204476h

X. Lei, J. Ma, J. Braz. Chem. Soc. 21 (2010) 209–213. https://doi.org/10.1590/S0103-50532010000200004

X. Chang, Z. Xie, Z. Liu, X. Zheng, J. Zheng, X. Li, Nano Energy 41 (2017) 731–737. https://doi.org/10.1016/j.nanoen.2017.10.017

G. Oltean, C.-W. Tai, K. Edström, L. Nyholm, Journal of Power Sources 269 (2014) 266–273. https://doi.org/10.1016/j.jpowsour.2014.06.118

M. Z. Ghavidel, M. R. Kupsta, J. Le, E. Feygin, A. Espitia, M. D. Fleischauer, J. Electrochem. Soc. 166 (2019) A4034–A4040. https://doi.org/10.1149/2.0061916jes

M. N. Obrovac, V. L. Chevrier, Chem. Rev. 114 (2014) 11444–11502. https://doi.org/10.1021/cr500207g

M. Nieradko, L. Eskandarian, O. A. Semenikhin, Electrochimica Acta 327 (2019) 135023. https://doi.org/10.1016/j.electacta.2019.135023

T. Zheng, D. Kramer, M. H. Tahmasebi, R. Mönig, S. T. Boles, ChemSusChem 13 (2020) 974–985. https://doi.org/10.1002/cssc.201903060

N. Hudak, D. Huber, ECS Trans. 33 (2011) 1–13. https://doi.org/10.1149/1.3557706

X. Chang, Z. Xie, Z. Liu, X. Zheng, J. Zheng, X. Li, Energy Storage Materials 25 (2020) 93–99. https://doi.org/10.1016/j.ensm.2019.10.027

G. D. Kwon, E. Moyen, Y. J. Lee, J. Joe, D. Pribat, ACS Appl. Mater. Interfaces 10 (2018) 29486–29495. https://doi.org/10.1021/acsami.8b08358

Published

30-09-2024

Issue

Section

GSCE2024

How to Cite

Aluminum particles as anode material for lithium ion batteries: effect of particle sizes on the electrochemical behaviours. (2024). Vietnam Journal of Catalysis and Adsorption, 13(3), 72-78. https://doi.org/10.62239/jca.2024.061

Share

Most read articles by the same author(s)

Similar Articles

1-10 of 483

You may also start an advanced similarity search for this article.