Synthesis of g-C3N4-based layered silicon as an anode material for lithium-ion batteries

Authors

  • Nguyen Duc Nhan Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Pham Thi Nhung Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Phan Thi Thuy Trang Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Nguyen Thi Lan Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Nguyen Van Thang Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Vo Vien Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author

DOI:

https://doi.org/10.51316/jca.2023.053

Keywords:

Silicon, lithium-ion batteries, anode material, g-C3N4

Abstract

The Si/g-C3N4 composite was prepared by a hydrothermal method using Si and g-C3N4 as precursors, in which Si and g-C3N4 were obtained from CaSi2 and melamine, respectively. This composite was used as an anode material for Lithium ion battery, which delivered a specific capacity of 135.6 mAh.g– 1 at current density of 1000 mA.g-1 and exhibited a stable cycling performance. This improvement compared to the pure Si anode is ascribed to the key role of g-C3N4 in relieving the structure stress induced by the large volume variation during lithiation/delithiation. Additionally, the observable enhancement in rate behavior of Si/g-C3N4 anode (108.8 mAh.g-1 at current density of 5000 mA.g-1) demonstrates the superiority of this composite in electronic and ionic conductivity which is clarified by the electrochemical impedance spectroscopy (EIS) result. This result shows g-C3N4 as a promising support to overcome the issue of large volume variation when using pure Si as an anode material.

Downloads

Download data is not yet available.

References

Scrosati B, Garche J, Journal of Power Sources 195 (2010) 2419-2430. https://doi.org/10.1016/j.jpowsour.2009.11.048

Arico AS, Bruce P, Scrosati B, Tarascon J-M, Van Schalkwijk W, Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group (2011) 148-159. https://doi.org/10.1038/nmat1368

Lee KT, Jeong S, Cho J, Accounts of chemical research 46 (2013) 1161-1170. https://doi.org/10.1021/ar200224h

Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W, The Journal of Physical Chemistry Letters 1 (2010) 2193-2203. https://doi.org/10.1021/jz1005384

Persson K, Sethuraman VA, Hardwick LJ, et al, The journal of physical chemistry letters 1 (2010) 1176-1180. https://doi.org/10.1021/jz100188d

Wu H, Cui Y, Nano today 7 (2012) 414-443. https://doi.org/10.1016/j.nantod.2012.08.004

Ryu J, Hong D, Choi S, Park S, Acs Nano, 10 (2016) 2843-2851.

https://doi.org/10.1021/acsnano.5b07977

Kim W-S, Hwa Y, Shin J-H, Yang M, Sohn H-J, Hong S-H, Nanoscale 6 (2014) 4297-4302. https://doi.org/10.1039/C3NR05354G

Bian Z, Tang Z, Xie J, et al, Frontiers in Energy 14 (2020) 759-766. https://doi.org/10.1007/s11708-020-0810-0

Wang G, Wen Z, Yang Y-E, et al, Journal of Materials Chemistry A 6 (2018) 7557-7565. https://doi.org/10.1039/C8TA00539G

Xia P, Zhu B, Yu J, Cao S, Jaroniec M, Journal of Materials Chemistry A 5 (2017) 3230-3238. https://doi.org/10.1039/C6TA08310B

Dettlaff-Weglikowska U, Hönle W, Molassioti-Dohms A, Finkbeiner S, Weber J, Physical Review B (1997) 13132. https://doi.org/10.1103/PhysRevB.56.13132

Lyth SM, Nabae Y, Moriya S, et al, The Journal of Physical Chemistry C 113 (2009) 20148-20151. https://doi.org/10.1021/jp907928j

Xu J, Xu Y, Tang G, Tang H, Jiang H, Applied Surface Science 492 (2019) 37-44. https://doi.org/10.1016/j.apsusc.2019.05.139

Jannat A, Lee W, Akhtar MS, Li ZY, Yang O-B, IEEE (2015) 1-3. https://doi.org/10.1109/PVSC.2015.7356325

Fuchs H, Stutzmann M, Brandt M, et al, Physical Review B 48 (1993) 8172. https://doi.org/10.1103/PhysRevB.48.8172

Etacheri V, Haik O, Goffer Y, et al, Langmuir, 28 (2012) 965-976. https://doi.org/10.1021/la203712s

Tian H, Tan X, Xin F, Wang C, Han W, Nano Energy 11 (2015) 490-499. https://doi.org/10.1016/j.nanoen.2014.11.031

Arreaga-Salas DE, Sra AK, Roodenko K, Chabal YJ, Hinkle CL, The Journal of Physical Chemistry C 116 (2012) 9072-9077. https://doi.org/10.1021/jp300787p

Yu Y, Gu L, Zhu C, Tsukimoto S, Van Aken PA, Maier J, Advanced materials 22 (2010) 2247-2250. https://10.1002/adma.200903755

Reyes Jiménez A, Klöpsch R, Wagner R, et al, ACS nano 11 (2017) 4731-4744. https://doi.org/10.1021/acsnano.7b00922

Published

30-09-2023

Issue

Section

Full Articles

How to Cite

Synthesis of g-C3N4-based layered silicon as an anode material for lithium-ion batteries. (2023). Vietnam Journal of Catalysis and Adsorption, 12(3), 95-100. https://doi.org/10.51316/jca.2023.053

Share

Funding data

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1-10 of 375

You may also start an advanced similarity search for this article.