Synthesis of g-C3N4-based layered silicon as an anode material for lithium-ion batteries
DOI:
https://doi.org/10.51316/jca.2023.053Keywords:
Silicon, lithium-ion batteries, anode material, g-C3N4Abstract
The Si/g-C3N4 composite was prepared by a hydrothermal method using Si and g-C3N4 as precursors, in which Si and g-C3N4 were obtained from CaSi2 and melamine, respectively. This composite was used as an anode material for Lithium ion battery, which delivered a specific capacity of 135.6 mAh.g– 1 at current density of 1000 mA.g-1 and exhibited a stable cycling performance. This improvement compared to the pure Si anode is ascribed to the key role of g-C3N4 in relieving the structure stress induced by the large volume variation during lithiation/delithiation. Additionally, the observable enhancement in rate behavior of Si/g-C3N4 anode (108.8 mAh.g-1 at current density of 5000 mA.g-1) demonstrates the superiority of this composite in electronic and ionic conductivity which is clarified by the electrochemical impedance spectroscopy (EIS) result. This result shows g-C3N4 as a promising support to overcome the issue of large volume variation when using pure Si as an anode material.
Downloads
References
Scrosati B, Garche J, Journal of Power Sources 195 (2010) 2419-2430. https://doi.org/10.1016/j.jpowsour.2009.11.048
Arico AS, Bruce P, Scrosati B, Tarascon J-M, Van Schalkwijk W, Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group (2011) 148-159. https://doi.org/10.1038/nmat1368
Lee KT, Jeong S, Cho J, Accounts of chemical research 46 (2013) 1161-1170. https://doi.org/10.1021/ar200224h
Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W, The Journal of Physical Chemistry Letters 1 (2010) 2193-2203. https://doi.org/10.1021/jz1005384
Persson K, Sethuraman VA, Hardwick LJ, et al, The journal of physical chemistry letters 1 (2010) 1176-1180. https://doi.org/10.1021/jz100188d
Wu H, Cui Y, Nano today 7 (2012) 414-443. https://doi.org/10.1016/j.nantod.2012.08.004
Ryu J, Hong D, Choi S, Park S, Acs Nano, 10 (2016) 2843-2851.
https://doi.org/10.1021/acsnano.5b07977
Kim W-S, Hwa Y, Shin J-H, Yang M, Sohn H-J, Hong S-H, Nanoscale 6 (2014) 4297-4302. https://doi.org/10.1039/C3NR05354G
Bian Z, Tang Z, Xie J, et al, Frontiers in Energy 14 (2020) 759-766. https://doi.org/10.1007/s11708-020-0810-0
Wang G, Wen Z, Yang Y-E, et al, Journal of Materials Chemistry A 6 (2018) 7557-7565. https://doi.org/10.1039/C8TA00539G
Xia P, Zhu B, Yu J, Cao S, Jaroniec M, Journal of Materials Chemistry A 5 (2017) 3230-3238. https://doi.org/10.1039/C6TA08310B
Dettlaff-Weglikowska U, Hönle W, Molassioti-Dohms A, Finkbeiner S, Weber J, Physical Review B (1997) 13132. https://doi.org/10.1103/PhysRevB.56.13132
Lyth SM, Nabae Y, Moriya S, et al, The Journal of Physical Chemistry C 113 (2009) 20148-20151. https://doi.org/10.1021/jp907928j
Xu J, Xu Y, Tang G, Tang H, Jiang H, Applied Surface Science 492 (2019) 37-44. https://doi.org/10.1016/j.apsusc.2019.05.139
Jannat A, Lee W, Akhtar MS, Li ZY, Yang O-B, IEEE (2015) 1-3. https://doi.org/10.1109/PVSC.2015.7356325
Fuchs H, Stutzmann M, Brandt M, et al, Physical Review B 48 (1993) 8172. https://doi.org/10.1103/PhysRevB.48.8172
Etacheri V, Haik O, Goffer Y, et al, Langmuir, 28 (2012) 965-976. https://doi.org/10.1021/la203712s
Tian H, Tan X, Xin F, Wang C, Han W, Nano Energy 11 (2015) 490-499. https://doi.org/10.1016/j.nanoen.2014.11.031
Arreaga-Salas DE, Sra AK, Roodenko K, Chabal YJ, Hinkle CL, The Journal of Physical Chemistry C 116 (2012) 9072-9077. https://doi.org/10.1021/jp300787p
Yu Y, Gu L, Zhu C, Tsukimoto S, Van Aken PA, Maier J, Advanced materials 22 (2010) 2247-2250. https://10.1002/adma.200903755
Reyes Jiménez A, Klöpsch R, Wagner R, et al, ACS nano 11 (2017) 4731-4744. https://doi.org/10.1021/acsnano.7b00922
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2021-DQN-04