Effect of carbonization temperature on the lithium storage performances of porous Sb/C nanocomposite
DOI:
https://doi.org/10.51316/jca.2020.019Keywords:
Antimony, composite, lithium storage, cyclabilityAbstract
In the present study, Sb/C nanocomposites have been synthesized using citrate-gel method in combination with a carbonization process at different temperatures in N2 gas. At reasonable carbonization temperatures, the porous Sb/C nanocomposites with novel foam like-interconnected three-dimensional structure, which is built-up by nanosized Sb particles covered by a carbon shell, are obtained. Among the synthesized composites, the Sb/C-600 sample, which is calcinated at 600 oC, exhibit the best lithium storage. At a discharge-charge rate of 0.1 C, the Sb/C-600 electrode can supply an initial reversible specific capacity of 640.7 mA h g-1, 1.7 times higher than the theoretical specific capacity of graphite anode. During 100 cycles, the electrode shows a slight capacity decay with 0.0348% of loss capacity per cycle. Because of this featured architecture, the Sb/C nanocomposites severe as anode material with enhanced lithium storage performances for rechargeable lithium ion batteries.
Downloads
References
G.E. Blomgren, J. Electrochem. Soc., 164 (2016) A5019. https://doi.org/10.1149/2.0251701jes
X. Liu, Y. Tian, X. Cao, X. Li, Z. Le, D. Zhang, X. Li, P. Nie, H. Li, ACS Appl. Energy Mater., 1 (2018) 6381-6387. https://doi.org/10.1021/acsaem.8b01353
Z. Chen, Y. Cao, J. Qian, X. Ai, H. Yang, J. Mater. Chem., 20 (2010) 7266-7271.
https://doi.org/10.1039/C0JM00829J
J. He, Y. Wei, T. Zhai, H. Li, Mater. Chem. Front., 2 (2018) 437-455. https://doi.org/10.1039/C7QM00480J
F.-S. Ke, L. Huang, B.C. Solomon, G.-Z. Wei, L.-J. Xue, B. Zhang, J.-T. Li, X.-D. Zhou, S.-G. Sun, J. Mater. Chem., 22 (2012) 17511-17517.
https://doi.org/10.1039/C2JM32162A
H. Kim, J. Cho, Chem. Mater., 20 (2008) 1679-1681. https://doi.org/10.1021/cm703401u
H.T.T. Le, X.-M. Pham, C.-J. Park, New J. Chem., 43 (2019) 10716-10725. https://doi.org/10.1039/C9NJ00762H
T. Gutknecht, C. Forsgren, B.-M. Steenari, J. Clean. Prod., 162 (2017) 474-483.
https://doi.org/10.1016/j.jclepro.2017.06.033
T. Karlsson, C. Forsgren, B.-M. Steenari, J. Sustain. Met., 4 (2018) 194-204. https://doi.org/10.1007/s40831-017-0156-y
R.G. Orman, D. Holland, J. Solid State Chem., 180 (2007) 2587-2596.
https://doi.org/10.1016/j.jssc.2007.07.004
J. Su, H. Liang, X.-N. Gong, X.-Y. Lv, Y.-F. Long, Y.-X. Wen, Nanomaterials (Basel), 7 (2017) 121. https://doi.org/10.3390/nano7060121
Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu, C. Wang, ACS Nano, 7 (2013) 6378-6386. https://doi.org/10.1021/nn4025674
X.-M. Pham, D.T. Ngo, H.T.T. Le, P.N. Didwal, R. Verma, C.-W. Min, C.-N. Park, C.-J. Park, Nanoscale, 10 (2018) 19399-19408. https://doi.org/10.1039/C8NR06182C
H.T.T. Le, T.-D. Dang, N.T.H. Chu, C.-J. Park, Electrochim. Acta, 332 (2020) 135399. https://doi.org/10.1016/j.electacta.2019.135399
J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Science, 270 (1995) 590. DOI: 10.1126/science.270.5236.590
H. Zhou, S. Zhu, M. Hibino, I. Honma, M. Ichihara, Adv. Mater., 15 (2003) 2107-2111.
https://doi.org/10.1002/adma.200306125
M.-Z. Xue, Z.-W. Fu, Electrochem. commun., 8 (2006) 1250-1256. https://doi.org/10.1016/j.elecom.2006.04.022