Effect of carbonization temperature on the lithium storage performances of porous Sb/C nanocomposite

Authors

  • Le Thi Thu Hang Hanoi University of Science and Technology Author
  • Nguyen Thi Thu Huyen Hanoi University of Science and Technology Author
  • Hoang Thi Bich Thuy Hanoi University of Science and Technology Author

DOI:

https://doi.org/10.51316/jca.2020.019

Keywords:

Antimony, composite, lithium storage, cyclability

Abstract

In the present study, Sb/C nanocomposites have been synthesized using citrate-gel method in combination with a carbonization process at different temperatures in N2 gas. At reasonable carbonization temperatures, the porous Sb/C nanocomposites with novel foam like-interconnected three-dimensional structure, which is built-up by nanosized Sb particles covered by a carbon shell, are obtained. Among the synthesized composites, the Sb/C-600 sample, which is calcinated at 600 oC, exhibit the best lithium storage. At a discharge-charge rate of 0.1 C, the Sb/C-600 electrode can supply an initial reversible specific capacity of 640.7 mA h g-1, 1.7 times higher than the theoretical specific capacity of graphite anode. During 100 cycles, the electrode shows a slight capacity decay with 0.0348% of loss capacity per cycle. Because of this featured architecture, the Sb/C nanocomposites severe as anode material with enhanced lithium storage performances for rechargeable lithium ion batteries.

Downloads

Download data is not yet available.

References

G.E. Blomgren, J. Electrochem. Soc., 164 (2016) A5019. https://doi.org/10.1149/2.0251701jes

X. Liu, Y. Tian, X. Cao, X. Li, Z. Le, D. Zhang, X. Li, P. Nie, H. Li, ACS Appl. Energy Mater., 1 (2018) 6381-6387. https://doi.org/10.1021/acsaem.8b01353

Z. Chen, Y. Cao, J. Qian, X. Ai, H. Yang, J. Mater. Chem., 20 (2010) 7266-7271.

https://doi.org/10.1039/C0JM00829J

J. He, Y. Wei, T. Zhai, H. Li, Mater. Chem. Front., 2 (2018) 437-455. https://doi.org/10.1039/C7QM00480J

F.-S. Ke, L. Huang, B.C. Solomon, G.-Z. Wei, L.-J. Xue, B. Zhang, J.-T. Li, X.-D. Zhou, S.-G. Sun, J. Mater. Chem., 22 (2012) 17511-17517.

https://doi.org/10.1039/C2JM32162A

H. Kim, J. Cho, Chem. Mater., 20 (2008) 1679-1681. https://doi.org/10.1021/cm703401u

H.T.T. Le, X.-M. Pham, C.-J. Park, New J. Chem., 43 (2019) 10716-10725. https://doi.org/10.1039/C9NJ00762H

T. Gutknecht, C. Forsgren, B.-M. Steenari, J. Clean. Prod., 162 (2017) 474-483.

https://doi.org/10.1016/j.jclepro.2017.06.033

T. Karlsson, C. Forsgren, B.-M. Steenari, J. Sustain. Met., 4 (2018) 194-204. https://doi.org/10.1007/s40831-017-0156-y

R.G. Orman, D. Holland, J. Solid State Chem., 180 (2007) 2587-2596.

https://doi.org/10.1016/j.jssc.2007.07.004

J. Su, H. Liang, X.-N. Gong, X.-Y. Lv, Y.-F. Long, Y.-X. Wen, Nanomaterials (Basel), 7 (2017) 121. https://doi.org/10.3390/nano7060121

Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu, C. Wang, ACS Nano, 7 (2013) 6378-6386. https://doi.org/10.1021/nn4025674

X.-M. Pham, D.T. Ngo, H.T.T. Le, P.N. Didwal, R. Verma, C.-W. Min, C.-N. Park, C.-J. Park, Nanoscale, 10 (2018) 19399-19408. https://doi.org/10.1039/C8NR06182C

H.T.T. Le, T.-D. Dang, N.T.H. Chu, C.-J. Park, Electrochim. Acta, 332 (2020) 135399. https://doi.org/10.1016/j.electacta.2019.135399

J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Science, 270 (1995) 590. DOI: 10.1126/science.270.5236.590

H. Zhou, S. Zhu, M. Hibino, I. Honma, M. Ichihara, Adv. Mater., 15 (2003) 2107-2111.

https://doi.org/10.1002/adma.200306125

M.-Z. Xue, Z.-W. Fu, Electrochem. commun., 8 (2006) 1250-1256. https://doi.org/10.1016/j.elecom.2006.04.022

Published

30-04-2020

Issue

Section

Full Articles

How to Cite

Effect of carbonization temperature on the lithium storage performances of porous Sb/C nanocomposite. (2020). Vietnam Journal of Catalysis and Adsorption, 9(1), 116-122. https://doi.org/10.51316/jca.2020.019

Share

Most read articles by the same author(s)

Similar Articles

1-10 of 88

You may also start an advanced similarity search for this article.