Synthesis of hybrid silver–doped graphene oxide material as a superior antibacterial performance and cadmium ion sensor

Authors

  • Nguyen Thi Thuy Linh VNU–HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam Author
  • Che Quang Cong VNU–HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam Author
  • Nguyen Minh Dat VNU–HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam Author
  • Tran Chau Diep VNU–HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam Author
  • Ninh Thi Tinh VNU–HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam Author
  • Doan Ba Thinh Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam Author
  • Nguyen Thanh Hoai Nam Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam Author
  • Chau Gia Khang Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam Author
  • Le Thi Bich Lieu VNU–HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam Author
  • Doan Thi Yen Oanh Publishing House for Science Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam Author
  • Hoang Minh Nam VNU–HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam Author
  • Mai Thanh Phong Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam Author
  • Nguyen Huu Hieu VNU–HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Vietnam Author

DOI:

https://doi.org/10.51316/jca.2021.119

Keywords:

Silver–doped graphene oxide, antibacterial, cadmium ion

Abstract

In this study, in-situ method was applied for synthesizing silver-doped graphene oxide (Ag/GO). The material was extensively characterized by X-ray diffraction, Transmission electron microscopy, Scanning electron microscope, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and UV-Vis spectroscopy. The characterization analysis results demonstrated that Ag/GO nanocomposite was successfully synthesized, revealing the formation of AgNPs on GO sheets with an average diameter ranging from 15 to 30 nm. The Ag/GO nanocomposite exhibited excellent antibacterial effect against three strains of  Gram-negative (Escherichia coli, Pseudomonas aeruginosa), and Gram-positive (Staphylococcus aureus) bacteria using the zone inhibition method. Moreover, the Ag/GO nanocomposite was also useful for the detection of Cd2+ ions in an aqueous solution with a detection limit of 10.15 mg/L. This study developed an eco-friendly route for the fabrication of Ag/GO nanocomposite using a non-toxic procedure that could be a great potential for biomedical-related applications and colorimetric detection of heavy metal present in water.

Downloads

Download data is not yet available.

References

D. Gu, X. Chang, X. Zhai, S. Sun, Z. Li, T. Liu, L. Dong, and Y. Yin, Int. 42 (2016) 9769–9778. https://doi.org/10.1016/j.ceramint.2016.03.069

D. Vilela, M. C. González, and A. Escarpa, Anal. Chim. Acta 751 (2012) 24–43. https://doi.org/10.1016/j.aca.2012.08.043

S. Liu, T. Helen Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, and Y. Chen, ACS Nano 5 (2011) 6971–6980. https://doi.org/10.1021/nn202451x

S. K. Kailasa, J. R. Koduru, M. L. Desai, T. J. Park, R. K. Singhal, and H. Basu, TrAC Trends Anal. Chem. 105 (2018) 106–120. https://doi.org/10.1016/j.trac.2018.05.004

A. Virgilio, A. B. S. Silva, A. R. A. Nogueira, J. A. Nóbrega, and G. L. Donati, J. Anal. At. Spectrom. 35 (2020) 1614–1620. https://doi.org/10.1039/D0JA00212G

S. S. I. Abdalla, H. Katas, J. Y. Chan, P. Ganasan, F. Azmi, and M. F. M. Busra, RSC Adv. 10 (2020) 4969–4983. https://doi.org/10.1039/C9RA08680C

N. Minh Dat, V. N. P. Linh, N. T. L. Phuong, L. N. Quan, N. T. Huong, L. A. Huy, H. M. Nam, M. Thanh Phong, and N. H. Hieu, Technol. 34 (2019) 792–799. https://doi.org/10.1080/10667857.2019.1630898

C. Castiglioni and M. M. S. Tommasini, (2007).

N. X. Dinh, N. Van Cuong, N. Van Quy, T. Q. Huy, K. Mølhave, and A.-T. Le, J. Electron. Mater. 45 (2016) 5321–5333. https://doi.org/10.1007/s11664-016-4734-8

L. C. Yun’an Qing, R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu, and Y. Qin, Int. J. Nanomedicine 13 (2018) 3311. https://doi.org/10.2147/IJN.S165125

N. Minh Dat, V. N. P. Linh, L. A. Huy, N. T. Huong, T. H. Tu, N. T. L. Phuong, H. M. Nam, M. Thanh Phong, and N. H. Hieu, Mater. Technol. 34 (2019) 369–375. https://doi.org/10.1080/10667857.2019.1575555

V. Palmieri and M. Papi, Nano Today 33 (2020) 100883. https://doi.org/10.1016/j.nantod.2020.100883

N. Malanovic and K. Lohner, Biophys. Acta (BBA)-Biomembranes 1858 (2016) 936–946. https://doi.org/10.1016/j.bbamem.2015.11.004

N. M. Dat, T. H. Quan, D. M. Nguyet, T. N. M. Anh, D. B. Thinh, T. C. Diep, L. A. Huy, L. T. Tai, N. D. Hai, P. T. Khang, H. M. Nam, M. T. Phong, and N. H. Hieu, Appl. Surf. Sci. 551 (2021) 149434. https://doi.org/10.1016/j.apsusc.2021.149434

K. Arora, Nanomaterials Handb. Graphene, Vol. 6 Biosens. Adv. Sensors (2019) 297.

N. Karki, H. Tiwari, C. Tewari, A. Rana, N. Pandey, S. Basak, and N. G. Sahoo, J. Mater. Chem. B 8 (2020) 8116–8148. https://doi.org/10.1039/D0TB01149E

J. Du, X. Hu, G. Zhang, X. Wu, and D. Gong, Anal. Lett. 51 (2018) 2906–2919. https://doi.org/10.1080/00032719.2018.1455103

F. Tanvir, A. Yaqub, S. Tanvir, R. An, and W. A. Anderson, Materials (Basel). 12 (2019) 1533. https://doi.org/10.3390/ma12091533.

M. L. Firdaus, I. Fitriani, S. Wyantuti, Y. W. Hartati, R. Khaydarov, J. A. Mcalister, H. Obata, and T. Gamo, Anal. Sci. 33 (2017) 831–837. https://doi.org/10.2116/analsci.33.831

S. Palisoc, E. Lee, M. Natividad, and L. Racines, Int. J. Electrochem. Sci. 13 (2018) 8854. https://doi.org/10.20964/2018.09.03

Published

30-01-2022

Issue

Section

Full Articles

How to Cite

Synthesis of hybrid silver–doped graphene oxide material as a superior antibacterial performance and cadmium ion sensor. (2022). Vietnam Journal of Catalysis and Adsorption, 10(1S), 187-192. https://doi.org/10.51316/jca.2021.119

Share

Funding data

Similar Articles

1-10 of 366

You may also start an advanced similarity search for this article.