Study structure characteristics and the photocatalytic degradation of Rhodamine B on C/g-C3N4 composites
DOI:
https://doi.org/10.62239/jca.2023.064Keywords:
Carbon nitride, rhodamine BAbstract
C/g-C3N4 composites were successfully synthesized by calcination method from precursors g-C3N4 (CN) with carbon from orange peel (OC). The products were characterized by physicochemical methods such as XRD, IR, SEM, BET, UV-Vis. The photocatalytic activity of the material was evaluated through the degradation of RhB in the visible light. Experimental results show that the OC/CN-150 composite exhibits the optimal catalytic activity of 90% after 1 hour of illumination. This study highlights the role of carbon synthesized from biomass sources. Besides, it can be combined with other materials to create composites to apply for photocatalysis to solve environmental problems.
Downloads
References
M. Pelaez et al., Applied Catalysis B: Environmental, 125 (2012) 331-349. https://doi.org/10.1016/j.apcatb.2012.05.036
A. Ibhadon and P. Fitzpatrick, Catalysts 3 (2013) 189–218. https://doi.org/10.3390/catal3010189
J. He, H. Sun, S. Indrawirawan, X. Duan, M. O. Tade, and S. Wang, Journal of colloid and interface science, 456 (2015), 15-21. https://doi.org/10.1016/j.jcis.2015.06.003
A. Phuruangrat, O. Yayapao, T. Thongtem, and S. Thongtem, Journal of Nanomaterials, (2014). https://doi.org/10.1155/2014/367529
Q. Luo, L. Bao, D. Wang, X. Li, and J. An, The Journal of Physical Chemistry C, 116 (49) (2012), 25806-25815. https://doi.org/10.1021/jp308150j
A. Thomas et al., Journal of Materials Chemistry, 18(41) (2008), 4893-4908 . https://doi.org/10.1039/B800274F
W. Liu, M. Wang, C. Xu, S. Chen, and X. Fu, Journal of Molecular Catalysis A: Chemical, 368 (2013), 9-15. https://doi.org/10.1016/j.molcata.2012.11.007
Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen, and X. Wang, Chemistry of Materials, 22(18) (2010), 5119-5121. https://doi.org/10.1021/cm1019102
A. Vinu, Advanced Functional Materials, 18(5) (2008), 816-827. https://doi.org/10.1002/adfm.200700783
M. Sierra, E. Borges, P. Esparza, J. Méndez-Ramos, J. Martín-Gil, and P. Martín-Ramos, Science and Technology of advanced MaTerialS, 17(1) (2016), 659-668. https://doi.org/10.1080/14686996.2016.1235962
S. P. Lee, Sensors 8(3) (2008), 1508-1518. https://doi.org/10.3390/s8031508
S. Hu et al., Applied surface science, 311 (2014), 164-171. https://doi.org/10.1016/j.apsusc.2014.05.036
X. Chen, P. Tan, B. Zhou, H. Dong, J. Pan, and X. Xiong, Journal of Alloys and Compounds, 647 (2015), 456-462. https://doi.org/10.1016/j.jallcom.2015.06.056
M. Yang et al., Ceramics International, 40(8) (2014), 11963-11969. https://doi.org/10.1016/j.ceramint.2014.04.033
M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, and M. Antonietti, Journal of the American Chemical Society, 135(19) (2013), 7118-7121. https://doi.org/10.1021/ja402521s
T. Dou, L. Zang, Y. Zhang, Z. Sun, L. Sun, and C. Wang, Materials letters, 244 (2019), 151-154. https://doi.org/10.1016/j.matlet.2019.02.066
R.-L. Huang et al., Journal of Physics D: Applied Physics, 51(13) (2018), p. 135501. https://10.1088/1361-6463/aab05d
S. Dey, S. Basha, G. Babu, and T. Nagendra, Cleaner Materials, 1 (2021), p. 100001. https://doi.org/10.1016/j.clema.2021.100001
L. D.-Y. Eric Sakué Ngankam, Baissassou Debina, Abdellaziz Baçaoui, Abdelrani Yaacoubi, Abdoul Ntieche Rahman, Materials Sciences and Applications, 11 (2020), 382-400. https://10.4236/msa.2020.116026
Y. Jiang et al., Physical Chemistry Chemical Physics, 22(18) (2020), 10116-10122. https://doi.org/10.1039/C9CP07002H
A. K. C. Md. Rashidul Islam, M. A. Gafur, Md. Aminur Rahman, Md. Hamidur Rahman, Research on Chemical Intermediates, 45(4) (2018), p. 1753-1773. http://dx.doi.org/10.1007/s11164-018-3703-7
D.-H. K. Xiaoyun Chen, Dongfang Lu, RSC Advances, 71 (2016) 1-31. https://doi.org/10.1039/C6RA10357J
M. A. Hossain and S. Islam, Am. J. Nanosci. Nanotechnol, 1(2) (2013), p. 52. htps://10.11648/j.nano.20130102.12
Liu, X. Liu, W. Dong, L. Zhang, Q. Kong, and W. Wang, Scientific reports, 7(1) (2017), p. 12437.
https://10.1038/s41598-017-12805-6
V. M. Ospina Guarín, R. Buitrago Sierra, and D. P. López López, 35 (2015), pp 49-55. https://doi.org/10.15446/ing.investig.v35n2.49838
B. Fahimirad, A. Asghari, and M. Rajabi, Microchimica Acta, 184 (2017), 3027-3035. https://10.1007/s00604-017-2273-5
J. Liu, T. Zhang, Z. Wang, G. Dawson, and W. Chen, Journal of Materials Chemistry, 21 (38) (2011), 14398-14401. https://doi.org/10.1039/C1JM12620B
G. Li, N. Yang, W. Wang, and W. Zhang, The Journal of Physical Chemistry C, 113(33) (2009), 14829-14833, 2009. https://doi.org/10.1021/jp905559m
Y. R. Girish, G. Alnaggar, A. Hezam, M. B. Nayan, G. Nagaraju, and K. Byrappa, Journal of Science: Advanced Materials and Devices, 7(2) (2022), p. 100419. https://doi.org/10.1016/j.jsamd.2022.100419
K. S. Sing, Pure and applied chemistry, 57(4) (1985), 603-619, 1985. https://doi.org/10.1351/pac198557040603
Sych et al., Applied surface science, 261 (2012), 75-82. https://doi.org/10.1016/j.apsusc.2012.07.084
A. Kumar and H. M. Jena, Results in Physics, 6 (2016), 651-658. https://doi.org/10.1016/j.rinp.2016.09.012
L. Yu, S. Liu, B. Yang, J. Wei, M. Lei, and X. Fan, Materials Letters, 141 (2015), 79-82. https://doi.org/10.1016/j.matlet.2014.11.049
X. Zhou et al., Nanoscale Research Letters, 9 (2014) 1-7. http://www.nanoscalereslett.com/content/9/1/34
D. Saha et al., Journal of environmental chemical engineering, 6(4) (2018) 4927-4936. https://doi.org/10.1016/j.jece.2018.07.030
L. Zhang, L. Sun, S. Liu, Y. Huang, K. Xu, and F. Ma, Rsc Advances, 6(65) (2016) 60318-60326. https://doi.org/10.1039/C6RA10923C