Study structure characteristics and the photocatalytic degradation of Rhodamine B on C/g-C3N4 composites

Authors

  • Phan Thi Thuy Trang Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Kim Thi Thu Hoa Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Nguyen Thi Thanh Binh Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Nguyen Tan Lam Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Hoang Duc An Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Le Duy Thanh Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Truong Cong Duc Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Vo Vien Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author
  • Nguyen Thi Lan Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam Author

DOI:

https://doi.org/10.62239/jca.2023.064

Keywords:

Carbon nitride, rhodamine B

Abstract

C/g-C3N4 composites were successfully synthesized by calcination method from precursors g-C3N4 (CN) with carbon from orange peel (OC). The products were characterized by physicochemical methods such as XRD, IR, SEM, BET, UV-Vis. The photocatalytic activity of the material was evaluated through the degradation of RhB in the visible light. Experimental results show that the OC/CN-150 composite exhibits the optimal catalytic activity of 90% after 1 hour of illumination. This study highlights the role of carbon synthesized from biomass sources. Besides, it can be combined with other materials to create composites to apply for photocatalysis to solve environmental problems.

Downloads

Download data is not yet available.

References

M. Pelaez et al., Applied Catalysis B: Environmental, 125 (2012) 331-349. https://doi.org/10.1016/j.apcatb.2012.05.036

A. Ibhadon and P. Fitzpatrick, Catalysts 3 (2013) 189–218. https://doi.org/10.3390/catal3010189

J. He, H. Sun, S. Indrawirawan, X. Duan, M. O. Tade, and S. Wang, Journal of colloid and interface science, 456 (2015), 15-21. https://doi.org/10.1016/j.jcis.2015.06.003

A. Phuruangrat, O. Yayapao, T. Thongtem, and S. Thongtem, Journal of Nanomaterials, (2014). https://doi.org/10.1155/2014/367529

Q. Luo, L. Bao, D. Wang, X. Li, and J. An, The Journal of Physical Chemistry C, 116 (49) (2012), 25806-25815. https://doi.org/10.1021/jp308150j

A. Thomas et al., Journal of Materials Chemistry, 18(41) (2008), 4893-4908 . https://doi.org/10.1039/B800274F

W. Liu, M. Wang, C. Xu, S. Chen, and X. Fu, Journal of Molecular Catalysis A: Chemical, 368 (2013), 9-15. https://doi.org/10.1016/j.molcata.2012.11.007

Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen, and X. Wang, Chemistry of Materials, 22(18) (2010), 5119-5121. https://doi.org/10.1021/cm1019102

A. Vinu, Advanced Functional Materials, 18(5) (2008), 816-827. https://doi.org/10.1002/adfm.200700783

M. Sierra, E. Borges, P. Esparza, J. Méndez-Ramos, J. Martín-Gil, and P. Martín-Ramos, Science and Technology of advanced MaTerialS, 17(1) (2016), 659-668. https://doi.org/10.1080/14686996.2016.1235962

S. P. Lee, Sensors 8(3) (2008), 1508-1518. https://doi.org/10.3390/s8031508

S. Hu et al., Applied surface science, 311 (2014), 164-171. https://doi.org/10.1016/j.apsusc.2014.05.036

X. Chen, P. Tan, B. Zhou, H. Dong, J. Pan, and X. Xiong, Journal of Alloys and Compounds, 647 (2015), 456-462. https://doi.org/10.1016/j.jallcom.2015.06.056

M. Yang et al., Ceramics International, 40(8) (2014), 11963-11969. https://doi.org/10.1016/j.ceramint.2014.04.033

M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, and M. Antonietti, Journal of the American Chemical Society, 135(19) (2013), 7118-7121. https://doi.org/10.1021/ja402521s

T. Dou, L. Zang, Y. Zhang, Z. Sun, L. Sun, and C. Wang, Materials letters, 244 (2019), 151-154. https://doi.org/10.1016/j.matlet.2019.02.066

R.-L. Huang et al., Journal of Physics D: Applied Physics, 51(13) (2018), p. 135501. https://10.1088/1361-6463/aab05d

S. Dey, S. Basha, G. Babu, and T. Nagendra, Cleaner Materials, 1 (2021), p. 100001. https://doi.org/10.1016/j.clema.2021.100001

L. D.-Y. Eric Sakué Ngankam, Baissassou Debina, Abdellaziz Baçaoui, Abdelrani Yaacoubi, Abdoul Ntieche Rahman, Materials Sciences and Applications, 11 (2020), 382-400. https://10.4236/msa.2020.116026

Y. Jiang et al., Physical Chemistry Chemical Physics, 22(18) (2020), 10116-10122. https://doi.org/10.1039/C9CP07002H

A. K. C. Md. Rashidul Islam, M. A. Gafur, Md. Aminur Rahman, Md. Hamidur Rahman, Research on Chemical Intermediates, 45(4) (2018), p. 1753-1773. http://dx.doi.org/10.1007/s11164-018-3703-7

D.-H. K. Xiaoyun Chen, Dongfang Lu, RSC Advances, 71 (2016) 1-31. https://doi.org/10.1039/C6RA10357J

M. A. Hossain and S. Islam, Am. J. Nanosci. Nanotechnol, 1(2) (2013), p. 52. htps://10.11648/j.nano.20130102.12

Liu, X. Liu, W. Dong, L. Zhang, Q. Kong, and W. Wang, Scientific reports, 7(1) (2017), p. 12437.

https://10.1038/s41598-017-12805-6

V. M. Ospina Guarín, R. Buitrago Sierra, and D. P. López López, 35 (2015), pp 49-55. https://doi.org/10.15446/ing.investig.v35n2.49838

B. Fahimirad, A. Asghari, and M. Rajabi, Microchimica Acta, 184 (2017), 3027-3035. https://10.1007/s00604-017-2273-5

J. Liu, T. Zhang, Z. Wang, G. Dawson, and W. Chen, Journal of Materials Chemistry, 21 (38) (2011), 14398-14401. https://doi.org/10.1039/C1JM12620B

G. Li, N. Yang, W. Wang, and W. Zhang, The Journal of Physical Chemistry C, 113(33) (2009), 14829-14833, 2009. https://doi.org/10.1021/jp905559m

Y. R. Girish, G. Alnaggar, A. Hezam, M. B. Nayan, G. Nagaraju, and K. Byrappa, Journal of Science: Advanced Materials and Devices, 7(2) (2022), p. 100419. https://doi.org/10.1016/j.jsamd.2022.100419

K. S. Sing, Pure and applied chemistry, 57(4) (1985), 603-619, 1985. https://doi.org/10.1351/pac198557040603

Sych et al., Applied surface science, 261 (2012), 75-82. https://doi.org/10.1016/j.apsusc.2012.07.084

A. Kumar and H. M. Jena, Results in Physics, 6 (2016), 651-658. https://doi.org/10.1016/j.rinp.2016.09.012

L. Yu, S. Liu, B. Yang, J. Wei, M. Lei, and X. Fan, Materials Letters, 141 (2015), 79-82. https://doi.org/10.1016/j.matlet.2014.11.049

X. Zhou et al., Nanoscale Research Letters, 9 (2014) 1-7. http://www.nanoscalereslett.com/content/9/1/34

D. Saha et al., Journal of environmental chemical engineering, 6(4) (2018) 4927-4936. https://doi.org/10.1016/j.jece.2018.07.030

L. Zhang, L. Sun, S. Liu, Y. Huang, K. Xu, and F. Ma, Rsc Advances, 6(65) (2016) 60318-60326. https://doi.org/10.1039/C6RA10923C

Published

09-03-2024

Issue

Section

Full Articles

How to Cite

Study structure characteristics and the photocatalytic degradation of Rhodamine B on C/g-C3N4 composites. (2024). Vietnam Journal of Catalysis and Adsorption, 12(4), 40-47. https://doi.org/10.62239/jca.2023.064

Share

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1-10 of 78

You may also start an advanced similarity search for this article.