Tuning Electronic Properties of Adsorbates on ZrO2/Pt3Zr Thin Films: A DFT Study

Authors

  • Ho Viet Thang The University of Danang, University of Science and Technology, Danang 550000, Viet Nam Author
  • Duong Thi Hong Phan The University of Danang, University of Science and Technology, Danang 550000, Viet Nam Author
  • Nguyen Thi Minh Xuan The University of Danang, University of Science and Technology, Danang 550000, Viet Nam Author

DOI:

https://doi.org/10.62239/jca.2024.009

Keywords:

Adsorption, charge transfer, ZrO2, ZrO2/Pt3Zr, DFT

Abstract

We study the absorption of single atom Au and dissociation of H2 molecule on ZrO2 film deposited on Pt3Zr surface using density functional theory (DFT) calculations including dispersion and U Hubbard correction. Parallel studies are also done for freestanding thin film ZrO2 for comparison. Compared to unsupported ZrO2 thin films, where only physical adsorption or unfavorable adsorption was observed, a completely different behavior is found for Au and H2 adsorbed on ZrO2/Pt3Zr films. This is accompanied by clear changes in the electronic structure of the adsorbates. Analysis of the Bader charge, the spin density as well as the density of states clearly show that the main reason causing the significant difference in adsorption characteristics of Au and H2 on ZrO2/Pt3Zr as compared to freestanding ZrO2 thin film is the charge transfer at the interface of ZrO2/Pt3Zr.

Downloads

Download data is not yet available.

References

E. Fortunato, P. Barquinha, R. Martins, Advances, Adv. Mater. 24 (2012) 2945–2986. https://doi.org/10.1002/adma.201103228

G. Pacchioni, Chem. Eur. J. 18 (2012) 10144–10158. https://doi.org/10.1002/chem.201201117

P. Luches, F. Pagliuca, S. Valeri, J. Phys. Chem. C. 115 (2011) 10718–10726. https://doi.org/10.1021/jp201139y

F. Tumino, C.S. Casari, M. Passoni, C.E. Bottani, A.L. Bassi, Nanotechnology. 27 (2016) 475703. https://doi.org/10.1088/0957-4484/27/47/475703

Y.D. Kim, J. Stultz, D.W. Goodman, Surf. Sci. 506 (2002) 228–234. https://doi.org/10.1016/S0039-6028(02)01386-9

Y. Gao, L. Zhang, Y. Pan, G. Wang, Y. Xu, W. Zhang, J. Zhu, Chin. Sci. Bull. 56 (2011) 502–507. https://doi.org/10.1007/s11434-010-4309-7

G. Pacchioni, L. Giordano, M. Baistrocchi, Phys. Rev. Lett. 94 (2005) 226104. https://doi.org/10.1103/PhysRevLett.94.226104

L. Giordano, G. Pacchioni, J. Goniakowski, N. Nilius, E.D.L. Rienks, H.-J. Freund, Phys. Rev. Lett. 101 (2008) 026102. https://doi.org/10.1103/PhysRevLett.101.026102

H.V. Thang, S. Tosoni, G. Pacchioni, Appl. Surf. Sci. 483 (2019) 133–139. https://doi.org/10.1016/j.apsusc.2019.03.240

K. Li, J.G. Chen, ACS Catal. 9 (2019) 7840–7861. https://doi.org/10.1021/acscatal.9b01943

[G. Pacchioni, ACS Catal. 4 (2014) 2874–2888. https://doi.org/10.1021/cs500791w

H. Li, J.-I.J. Choi, W. Mayr-Schmölzer, C. Weilach, C. Rameshan, F. Mittendorfer, J. Redinger, M. Schmid, G. Rupprechter, J. Phys. Chem. C. 119 (2015) 2462–2470. https://doi.org/10.1021/jp5100846

H. Li, C. Rameshan, A.V. Bukhtiyarov, I.P. Prosvirin, V.I. Bukhtiyarov, G. Rupprechter, Surf. Sci. 679 (2019) 139–146. https://doi.org/10.1016/j.susc.2018.08.028

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15–50. https://doi.org/10.1016/0927-0256(96)00008-0

G. Kresse, J. Furthmüller, Phys. Rev. B. 54 (1996) 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

G. Kresse, D. Joubert, Phys. Rev. B. 59 (1999) 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B. 57 (1998) 1505–1509. https://doi.org/10.1103/PhysRevB.57.1505.

A.R. Puigdollers, G. Pacchioni, Nanoscale. 9 (2017) 6866–6876. https://doi.org/10.1039/C7NR01904A

G. Teufer, Acta Cryst. 15 (1962) 1187–1187. https://doi.org/10.1107/S0365110X62003114.

S. Grimme, J. Comput Chem. 27 (2006) 1787–1799. https://doi.org/10.1002/jcc.20495.

S. Tosoni, J. Sauer, Phys. Chem. Chem. Phys. 12 (2010) 14330–14340. https://doi.org/10.1039/C0CP01261K

E. Sanville, S.D. Kenny, R. Smith, G. Henkelman, J. Comput. Chem. 28 (2007) 899–908. https://doi.org/10.1002/jcc.20575

W. Tang, E. Sanville, G. Henkelman, J. Phys.: Condens. Matter. 21 (2009) 084204. https://doi.org/10.1088/0953-8984/21/8/084204

M. Yu, D.R. Trinkle, J. Chem. Phys. 134 (2011) 064111. https://doi.org/10.1063/1.3553716.

H.V. Thang, S. Tosoni, G. Pacchioni, ACS Catal. 8 (2018) 4110–4119. https://doi.org/10.1021/acscatal.7b03896

M. Yulikov, M. Sterrer, M. Heyde, H.-P. Rust, T. Risse, H.-J. Freund, G. Pacchioni, A. Scagnelli, Phys. Rev. Lett. 96 (2006) 146804. https://doi.org/10.1103/PhysRevLett.96.146804

C. Wu, L. Lin, J. Liu, J. Zhang, F. Zhang, T. Zhou, N. Rui, S. Yao, Y. Deng, F. Yang, W. Xu, J. Luo, Y. Zhao, B. Yan, X.-D. Wen, J.A. Rodriguez, D. Ma, Nat Commun. 11 (2020) 5767. https://doi.org/10.1038/s41467-020-19634-8

H.V. Thang, G. Pacchioni, ChemNanoMat. 5 (2019) 932–939. https://doi.org/10.1002/cnma.201900195

Published

30-03-2024

Issue

Section

Full Articles

How to Cite

Tuning Electronic Properties of Adsorbates on ZrO2/Pt3Zr Thin Films: A DFT Study. (2024). Vietnam Journal of Catalysis and Adsorption, 13(1), 57-62. https://doi.org/10.62239/jca.2024.009

Share

Funding data

Similar Articles

1-10 of 172

You may also start an advanced similarity search for this article.