Mechanical and weather resistance improvement of polyurethane thin films embedded with nanocomposites CeO2-SiO2

Authors

  • Nguyen Quang Bac Vietnam Academy of Science and Technology
  • Nguyen Thi Ha Chi Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, VIETNAM
  • Doan Trung Dung Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, VIETNAM
  • Pham Ngoc Chuc Institute of Materials Science, Vietnam Academy of Science and Technology
  • Duong Thi Lim Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
  • Dao Ngoc Nhiem Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, VIETNAM
  • Tran Dai Lam Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam

DOI:

https://doi.org/10.51316/jca.2021.117

Keywords:

Polyurethane, weather resistance, CeO2-SiO2, nanocomposites, thin film

Abstract

Polyurethane (PU) thin films quickly degrade under the presence of oxygen, vapor, temperature, and ultraviolet irradiation. Thus, efforts have been dedicated to improving the properties of PU films. This study presents a simple synthesis route to prepare PU embedded with CeO2-SiO2 nanocomposites (CS NCs). At first, the CS NCs were synthesized by a gel combustion method using polyvinyl alcohol. Prepared nanocomposites were characterized by X-ray diffraction spectrometry, scanning electron microscopy. Next, the prepared nanocomposites were filled into PU films with the loading from 0.1 % and 2.0 % wt. The mechanical properties of these films were evaluated following the DIN standards. Furthermore, these films also were subjected to a QUV accelerated weathering test to investigate the weather resistance capacity.

Downloads

Download data is not yet available.

References

H.M.C.C. Somarathna, S.N. Raman, D. Mohotti, A.A. Mutalib, K.H. Badri., Constr. Build. Mater. 190 (2018) 995-1014. https://doi.org/10.1016/j.conbuildmat.2018.09.166

I. O. Oladele, T. F. Omotosho, A. A. Adediran., Int. J. Polym. Sci. (2020). https://doi.org/10.1155/2020/8834518

X. F. Yang, C. Vang, D. E. Tallman, G. P. Bierwagen, S.G. Croll, S. Rohlik., Polym. Degrad. Stab. 74 (2001) 341-351. https://doi.org/10.1016/S0141-3910(01)00166-5

J. F. Larché, P. O. Bussire, J. L. Gardette., Polym. Degrad. Stab. 95 (2010) 1810-1817. https://doi.org/10.1016/j.polymdegradstab.2010.05.005

T. T. Van, F. Abedin, A. Usta, R. Asmatulu., J. Compos. Mater. 53 (2019) 1387-1399. https://doi.org/10.1177/0021998318799402

T. Montini, M. Melchionna, M. Monai, P. Fornasiero., Chem. Rev. 116 (2016) 5987-6041. https://doi.org/10.1021/acs.chemrev.5b00603

F. Liu, A. Liu, W. Tao, Y. Yang., Prog. Org. Coatings. 145 (2020) 105685. https://doi.org/10.1016/j.porgcoat.2020.105685

I. Fajzulin, X. Zhu, M. Möller., J. Coatings Technol. Res. 12 (2015) 617-632. https://doi.org/10.1007/s11998-015-9683-2

N. N. Dao, M. D. Luu, Q. K. Nguyen, B. S. Kim., Adv. Nat. Sci. Nanosci. Nanotechnol. 2 (2011) 2-6. https://doi.org/10.1088/2043-6262/2/4/045013

A. Z. M. Rus, N. N. M. Hassan., Int. J. Polym. Sci. (2015). https://doi.org/10.1155/2015/615284

D.N. Nhiem, N.Q. Bac, D.T. Dung, P.N. Chuc, N.T.H. Chi, D.T. Lim., Adv. Mech. Eng., 10 (2018) 1-5. https://doi.org/10.1177/1687814018816770

F. Chen, D. Zhou, L. Yang, J. Sun, J. Wu., Mater. Res. Express. 6 (2019) 015308. https://doi.org/10.1088/2053-1591/aae636

G. Cai, S. Xiao, C. Deng, D. Jiang, X. Zhang, Z. Dong, Corros. Sci., 178 (2021) 109014. https://doi.org/10.1016/j.corsci.2020.109014

N. N. Dao, T. H. C. Nguyen, T. D. Doan, N. C. Pham, Q. B. Nguyen, T. L. Duong, N. N. Pham, V. N. M. Nguyen. J. Polym. Res. 28 (2021) 1-11. https://doi.org/10.1007/s10965-021-02487-0

E. J. S. Christy, R. Alagar, M. Dhanu, A. Pius., Environ. Nanotechnol., Monit. Manag. 14 (2020) 100365. https://doi.org/10.1016/j.enmm.2020.100365

N. V. N. Mai, D. T. Lim, N. Q. Bac, N. T. H. Chi, D. T. Dung, N. N. Pham, D. N. Nhiem., J. Chinese Chem. Soc. 67 (2020) 242-245. https://doi.org/10.1002/jccs.201900033

H. Wang, W. Lin, X. Qiu, F. Fu, R. Zhong, W. Liu, D. Yang., ACS Sustain. Chem. Eng. 6 (2018) 3696-3705. https://doi.org/10.1021/acssuschemeng.7b04038

J. Lin, Y. Wu, A. Khayambashi, X. Wang, Y. Wei. Adsorpt. Sci. Technol. 36 (2018) 743-761. https://doi.org/10.1021/acssuschemeng.7b04038

B.M. Reddy, A. Khan, P. Lakshmanan, M. Aouine, S. Loridant, J.C. Volta, J. Phys. Chem. B. 109 (2005) 3355-3363. https://doi.org/10.1021/jp045193h

M. Ari, K. J. Miller, B. A. Marinkovic, P. M. Jardim, R. de Avillez, F. Rizzo, M. A. White. J. Sol-Gel Sci. Technol. 58 (2011) 121-125. https://doi.org/10.1007/s10971-010-2364-9

A. R. Bueno, R. F. M. Oman, P. M. Jardim, N. A. Rey, R. R. De Avillez. Microporous Mesoporous Mater. 185 (2014) 86-91. https://doi.org/10.1016/j.micromeso.2013.10.021

P. Bruhns, R. X. Fischer, Eur. J. Mineral. 12 (2000) 615-624.

https://doi.org/10.1127/0935-1221/2000/0012-0615

Y. Shinohara, N. Kohyama, Ind. Health. 42 (2004) 277-285. https://doi.org/10.2486/indhealth.42.277

J. Li, Y. Hao, H. Li, M. Xia, X. Sun, L. Wang. Microporous Mesoporous Mater. 12i0 (2009) 421-425. https://doi.org/10.1016/j.micromeso.2008.12.014

F.Wang, K. Wang, Y. Muhammad, Y. Wei, L. Shao, X. Wang. ACS Sustain. Chem. Eng. 7 (2019) 14716–14726. https://doi.org/10.1021/acssuschemeng.9b02643

E. Poonia, P. K. Mishra, V. Kiran, J. Sangwan, R. Kumar, P. K. Rai, R. Malik, V. K. Tomer, R. Ahuja, Y. K. Mishra, J. Mater. Chem. C 7 (2019) 5477-5487. https://doi.org/10.1039/C9TC01081E

T. Bai, L. Lv, W. Du, W. Fang, Y. Wang, Nanomaterials 10 (2020) 137. https://doi.org/10.3390/nano10010137

R. Rodríguez, B. Pérez, S. Flórez, J. Adhes. 90 (2014) 848-859. https://doi.org/10.3390/nano9030389

X. F. Yang, D. E. Tallman, G.P. Bierwagen, S.G. Croll, S. Rohlik, Polym. Degrad. Stab. 77 (2002) 103-109. https://doi.org/10.1016/S0141-3910(02)00085-X

J. Liu, Z. Li, L. Zhang, J. Hou, Z. Lu, P. Zhang, B. Wang, N. Jin, Prog. Org. Coatings 136 (2019) 105310. https://doi.org/10.1016/j.porgcoat.2019.105310

M.M. Jalili, S. Moradian, Prog. Org. Coatings 66 (2009) 359-366. https://doi.org/10.1016/j.porgcoat.2009.07.011

A. Saadat-Monfared, M. Mohseni, M. H. Tabatabaei, Colloids Surfaces A Physicochem. Eng. Asp. 408 (2012) 64-70. https://doi.org/10.1016/j.colsurfa.2012.05.027

Published

30-01-2022

Issue

Section

Full Articles

How to Cite

Mechanical and weather resistance improvement of polyurethane thin films embedded with nanocomposites CeO2-SiO2. (2022). Vietnam Journal of Catalysis and Adsorption, 10(1S), 173-179. https://doi.org/10.51316/jca.2021.117

Share

Funding data

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1-10 of 84

You may also start an advanced similarity search for this article.