Mechanical and weather resistance improvement of polyurethane thin films embedded with nanocomposites CeO2-SiO2
DOI:
https://doi.org/10.51316/jca.2021.117Keywords:
Polyurethane, weather resistance, CeO2-SiO2, nanocomposites, thin filmAbstract
Polyurethane (PU) thin films quickly degrade under the presence of oxygen, vapor, temperature, and ultraviolet irradiation. Thus, efforts have been dedicated to improving the properties of PU films. This study presents a simple synthesis route to prepare PU embedded with CeO2-SiO2 nanocomposites (CS NCs). At first, the CS NCs were synthesized by a gel combustion method using polyvinyl alcohol. Prepared nanocomposites were characterized by X-ray diffraction spectrometry, scanning electron microscopy. Next, the prepared nanocomposites were filled into PU films with the loading from 0.1 % and 2.0 % wt. The mechanical properties of these films were evaluated following the DIN standards. Furthermore, these films also were subjected to a QUV accelerated weathering test to investigate the weather resistance capacity.
Downloads
References
H.M.C.C. Somarathna, S.N. Raman, D. Mohotti, A.A. Mutalib, K.H. Badri., Constr. Build. Mater. 190 (2018) 995-1014. https://doi.org/10.1016/j.conbuildmat.2018.09.166
I. O. Oladele, T. F. Omotosho, A. A. Adediran., Int. J. Polym. Sci. (2020). https://doi.org/10.1155/2020/8834518
X. F. Yang, C. Vang, D. E. Tallman, G. P. Bierwagen, S.G. Croll, S. Rohlik., Polym. Degrad. Stab. 74 (2001) 341-351. https://doi.org/10.1016/S0141-3910(01)00166-5
J. F. Larché, P. O. Bussire, J. L. Gardette., Polym. Degrad. Stab. 95 (2010) 1810-1817. https://doi.org/10.1016/j.polymdegradstab.2010.05.005
T. T. Van, F. Abedin, A. Usta, R. Asmatulu., J. Compos. Mater. 53 (2019) 1387-1399. https://doi.org/10.1177/0021998318799402
T. Montini, M. Melchionna, M. Monai, P. Fornasiero., Chem. Rev. 116 (2016) 5987-6041. https://doi.org/10.1021/acs.chemrev.5b00603
F. Liu, A. Liu, W. Tao, Y. Yang., Prog. Org. Coatings. 145 (2020) 105685. https://doi.org/10.1016/j.porgcoat.2020.105685
I. Fajzulin, X. Zhu, M. Möller., J. Coatings Technol. Res. 12 (2015) 617-632. https://doi.org/10.1007/s11998-015-9683-2
N. N. Dao, M. D. Luu, Q. K. Nguyen, B. S. Kim., Adv. Nat. Sci. Nanosci. Nanotechnol. 2 (2011) 2-6. https://doi.org/10.1088/2043-6262/2/4/045013
A. Z. M. Rus, N. N. M. Hassan., Int. J. Polym. Sci. (2015). https://doi.org/10.1155/2015/615284
D.N. Nhiem, N.Q. Bac, D.T. Dung, P.N. Chuc, N.T.H. Chi, D.T. Lim., Adv. Mech. Eng., 10 (2018) 1-5. https://doi.org/10.1177/1687814018816770
F. Chen, D. Zhou, L. Yang, J. Sun, J. Wu., Mater. Res. Express. 6 (2019) 015308. https://doi.org/10.1088/2053-1591/aae636
G. Cai, S. Xiao, C. Deng, D. Jiang, X. Zhang, Z. Dong, Corros. Sci., 178 (2021) 109014. https://doi.org/10.1016/j.corsci.2020.109014
N. N. Dao, T. H. C. Nguyen, T. D. Doan, N. C. Pham, Q. B. Nguyen, T. L. Duong, N. N. Pham, V. N. M. Nguyen. J. Polym. Res. 28 (2021) 1-11. https://doi.org/10.1007/s10965-021-02487-0
E. J. S. Christy, R. Alagar, M. Dhanu, A. Pius., Environ. Nanotechnol., Monit. Manag. 14 (2020) 100365. https://doi.org/10.1016/j.enmm.2020.100365
N. V. N. Mai, D. T. Lim, N. Q. Bac, N. T. H. Chi, D. T. Dung, N. N. Pham, D. N. Nhiem., J. Chinese Chem. Soc. 67 (2020) 242-245. https://doi.org/10.1002/jccs.201900033
H. Wang, W. Lin, X. Qiu, F. Fu, R. Zhong, W. Liu, D. Yang., ACS Sustain. Chem. Eng. 6 (2018) 3696-3705. https://doi.org/10.1021/acssuschemeng.7b04038
J. Lin, Y. Wu, A. Khayambashi, X. Wang, Y. Wei. Adsorpt. Sci. Technol. 36 (2018) 743-761. https://doi.org/10.1021/acssuschemeng.7b04038
B.M. Reddy, A. Khan, P. Lakshmanan, M. Aouine, S. Loridant, J.C. Volta, J. Phys. Chem. B. 109 (2005) 3355-3363. https://doi.org/10.1021/jp045193h
M. Ari, K. J. Miller, B. A. Marinkovic, P. M. Jardim, R. de Avillez, F. Rizzo, M. A. White. J. Sol-Gel Sci. Technol. 58 (2011) 121-125. https://doi.org/10.1007/s10971-010-2364-9
A. R. Bueno, R. F. M. Oman, P. M. Jardim, N. A. Rey, R. R. De Avillez. Microporous Mesoporous Mater. 185 (2014) 86-91. https://doi.org/10.1016/j.micromeso.2013.10.021
P. Bruhns, R. X. Fischer, Eur. J. Mineral. 12 (2000) 615-624.
https://doi.org/10.1127/0935-1221/2000/0012-0615
Y. Shinohara, N. Kohyama, Ind. Health. 42 (2004) 277-285. https://doi.org/10.2486/indhealth.42.277
J. Li, Y. Hao, H. Li, M. Xia, X. Sun, L. Wang. Microporous Mesoporous Mater. 12i0 (2009) 421-425. https://doi.org/10.1016/j.micromeso.2008.12.014
F.Wang, K. Wang, Y. Muhammad, Y. Wei, L. Shao, X. Wang. ACS Sustain. Chem. Eng. 7 (2019) 14716–14726. https://doi.org/10.1021/acssuschemeng.9b02643
E. Poonia, P. K. Mishra, V. Kiran, J. Sangwan, R. Kumar, P. K. Rai, R. Malik, V. K. Tomer, R. Ahuja, Y. K. Mishra, J. Mater. Chem. C 7 (2019) 5477-5487. https://doi.org/10.1039/C9TC01081E
T. Bai, L. Lv, W. Du, W. Fang, Y. Wang, Nanomaterials 10 (2020) 137. https://doi.org/10.3390/nano10010137
R. Rodríguez, B. Pérez, S. Flórez, J. Adhes. 90 (2014) 848-859. https://doi.org/10.3390/nano9030389
X. F. Yang, D. E. Tallman, G.P. Bierwagen, S.G. Croll, S. Rohlik, Polym. Degrad. Stab. 77 (2002) 103-109. https://doi.org/10.1016/S0141-3910(02)00085-X
J. Liu, Z. Li, L. Zhang, J. Hou, Z. Lu, P. Zhang, B. Wang, N. Jin, Prog. Org. Coatings 136 (2019) 105310. https://doi.org/10.1016/j.porgcoat.2019.105310
M.M. Jalili, S. Moradian, Prog. Org. Coatings 66 (2009) 359-366. https://doi.org/10.1016/j.porgcoat.2009.07.011
A. Saadat-Monfared, M. Mohseni, M. H. Tabatabaei, Colloids Surfaces A Physicochem. Eng. Asp. 408 (2012) 64-70. https://doi.org/10.1016/j.colsurfa.2012.05.027
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers TĐVLTT.01/21-23