Synthesis of TiO2 thin films on different substrates by chemical vapor deposition method

Authors

  • Ta Hong Duc School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam Author
  • Phan Ngoc Quang School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam Author
  • Vu Viet Thang School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam Author
  • Le Minh Thang School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam Author

DOI:

https://doi.org/10.51316/jca.2021.073

Keywords:

TiO2 thin films, Chemical Vapor Deposition, Methyl orange, Photocatalysis

Abstract

TiO2 thin films were synthesized by using Chemical Vapor Deposition (CVD) method on different substrates, such as glass, aluminium foil , and ceramic. The samples had been characterized by microscopy analysis, SEM, and EDS. The results show that TiO2 thin films were successfully fabricated and TiO2 nanocrystals with size of 50-100 nm loaded uniformly on surface of different substrates. The photocatalytic activities of all samples were investigated in photo-degradation of methyl orange (MO) under UV light irradiation and was followed by the UV-Vis diffuse reflectance spectroscopy, showing that the conversion of methyl orange achieved the highest percentage of 91% with TiO2 thin film synthesized on the ceramic substrate over 270 minutes of reaction. The hypothetical mechanism explaining this observation is that the surface morphology of ceramic plays a major role in the augmentation of MO molecules adsorption onto the surface of material, thus, improves the dye degradation process.

Downloads

Download data is not yet available.

References

H. Tada, M. Fujishima and H. Kobayashi, Chemical Society Reviews, 40 (7) (2011) 4232-4243. https://doi.org/10.1039/C0CS00211A

A. L. Linsebigler, G. Lu and J. T. Yates Jr, Chemical Reviews, 95 (3) (1995) 735-758. https://doi.org/10.1021/cr00035a013

S. N. R. Inturi, M. Suidan and P. G. Smirniotis, Applied Catalysis B: Environmental, 180 (2016) 351-361.

https://doi.org/10.1016/j.apcatb.2015.05.046

Y. Yan, W. Shi, Z. Yuan, S. He, D. Li, Q. Meng, H. Ji, C. Chen, W. Ma and J. Zhao, Journal of the American Chemical Society, 139 (5) (2017) 2083-2089. https://doi.org/10.1021/jacs.6b12324

K. Hashimoto, H. Irie and A. Fujishima, Japanese journal of applied physics, 44 (12R) (2005) 8269. https://10.1143/JJAP.44.8269

K. Nakata and A. Fujishima, Journal of photochemistry and photobiology C: Photochemistry Reviews, 13 (3) (2012) 169-189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

Q. Guo, C. Zhou, Z. Ma and X. Yang, Advanced Materials, 31 (50) (2019) 1901997. https://doi.org/10.1002/adma.201901997

S.-C. Jung, S.-J. Kim, N. Imaishi and Y.-I. Cho, Applied Catalysis B: Environmental, 55 (4) (2005) 253-257. https://doi.org/10.1016/j.apcatb.2004.08.009

S. Tanemura, L. Miao, W. Wunderlich, M. Tanemura, Y. Mori, S. Toh and K. Kaneko, Science and Technology of Advanced Materials, 6 (1) (2005) 11-17.

https://doi.org/10.1016/j.stam.2004.06.003

M. K Patil, S. Shaikh and I. Ganesh, Current Nanoscience, 11 (3) (2015) 271-285. https://10.2174/1573413711666150212235054

J. M. Rzaij and A. M. Abass, Journal of Chemical Reviews, 2 (2) (2020) 114-121. https://10.33945/SAMI/JCR.2020.2.4

S. C. Jung, B. H. Kim, S. J. Kim, N. Imaishi and Y. I. Cho, Chemical Vapor Deposition, 11 (3) (2005) 137-141.

https://doi.org/10.1002/cvde.200406321

A. Dewaele, F. Verpoort and B. Sels, ChemCatChem, 8 (19) (2016) 3010-3030. https://doi.org/10.1002/cctc.201600591

Y. Chimupala, G. Hyett, R. Simpson, R. Mitchell, R. Douthwaite, S. J. Milne and R. D. Brydson, RSC advances, 4 (89) (2014) 48507-48515. https://doi.org/10.1039/C4RA07570F

R. Sonawane, S. Hegde and M. Dongare, Materials chemistry and physics, 77 (3) (2003) 744-750. https://doi.org/10.1016/S0254-0584(02)00138-4

O. Akhavan, Journal of colloid and interface science, 336 (1) (2009) 117-124. https://doi.org/10.1016/j.jcis.2009.03.018

C.-H. Hung and B. J. Mariñas, Environmental science & technology, 31 (5) (1997) 1440-1445. https://doi.org/10.1021/es960685w

D.-J. Lee, S. A. Senseman, A. S. Sciumbato, S.-C. Jung and L. J. Krutz, Journal of agricultural and food chemistry, 51 (9) (2003) 2659-2664. https://doi.org/10.1021/jf026232u

Y. Lai, C. Lin, J. Huang, H. Zhuang, L. Sun and T. Nguyen, Langmuir, 24 (8) (2008) 3867-3873. https://doi.org/10.1021/la7031863

P. Serp, P. Kalck and R. Feurer, Chemical reviews, 102 (9) (2002) 3085-3128. https://doi.org/10.1021/cr9903508

D. Byun, Y. Jin, B. Kim, J. K. Lee and D. Park, Journal of hazardous materials, 73 (2) (2000) 199-206. https://doi.org/10.1016/S0304-3894(99)00179-X

X. Zhang, M. Zhou and L. Lei, Applied Catalysis A: General, 282 (1-2) (2005) 285-293. https://doi.org/10.1016/j.apcata.2004.12.022

H. Lee, M. Y. Song, J. Jurng and Y.-K. Park, Powder technology, 214 (1) (2011) 64-68. https://doi.org/10.1016/j.powtec.2011.07.036

H. Lee, S. Park, S. Kim, B. Kim, H. Yoon, J. Kim and S. Jung, Progress in Organic Coatings, 74 (4) (2012) 758-763. https://doi.org/10.1016/j.porgcoat.2011.09.024

Y. Kuzminykh, A. Dabirian, M. Reinke and P. Hoffmann, Surface and Coatings Technology, 230 (2013) 13-21. https://doi.org/10.1016/j.surfcoat.2013.06.059

J. Yu and X. Zhao, Materials Research Bulletin, 35 (8) (2000) 1293-1301. https://doi.org/10.1016/S0025-5408(00)00327-5

B. Astinchap and K. G. Laelabadi, Journal of Physics and Chemistry of Solids, 129 (2019) 217-226. https://doi.org/10.1016/j.jpcs.2019.01.012

H. Sun, C. Wang, S. Pang, X. Li, Y. Tao, H. Tang and M. Liu, Journal of Non-Crystalline Solids, 354 (12-13) (2008) 1440-1443. https://doi.org/10.1016/j.jnoncrysol.2007.01.108

V. T. Vu, S. Bartling, T. Peppel, H. Lund, C. Kreyenschulte, J. Rabeah, N. G. Moustakas, A.-E. Surkus, H. D. Ta and N. Steinfeldt, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 589 (2020) 124383. https://doi.org/10.1016/j.colsurfa.2019.124383

G. A. Battiston, R. Gerbasi, M. Porchia and A. Marigo, Thin Solid Films, 239 (2) (1994) 186-191. https://doi.org/10.1016/0040-6090(94)90849-4

K. Zimny, T. Roques-Carmes, C. Carteret, M. Stébé and J. Blin, The Journal of Physical Chemistry C, 116 (11) (2012) 6585-6594. https://doi.org/10.1021/jp212428k

R. Acharya and K. Parida, Journal of Environmental Chemical Engineering, 8 (4) (2020) 103896. https://doi.org/10.1016/j.jece.2020.103896

L. Liu and Y. Li, Aerosol and air quality research, 14 (2) (2014) 453-469. https://doi.org/10.4209/aaqr.2013.06.0186

M. Pawar, S. Topcu Sendoğdular and P. Gouma, Journal of Nanomaterials, (2018). https://doi.org/10.1155/2018/5953609

J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D. W. Bahnemann, Chemical reviews, 114 (19) (2014) 9919-9986 https://doi.org/10.1021/cr5001892

Published

31-12-2021

Issue

Section

Full Articles

How to Cite

Synthesis of TiO2 thin films on different substrates by chemical vapor deposition method. (2021). Vietnam Journal of Catalysis and Adsorption, 10(4), 84-89. https://doi.org/10.51316/jca.2021.073

Share

Similar Articles

1-10 of 263

You may also start an advanced similarity search for this article.