Study on fabrication of Sn-doped ZnO thin films oriented to the application for organic dye degradation catalysts in water environment
DOI:
https://doi.org/10.51316/jca.2021.043Keywords:
Sn-doped ZnO thin films, sol-gel, dip-coating, photocatalytic activity, methylene blueAbstract
In this study, zinc oxide (ZnO) doped with Sn thin films were deposited on the glass substrate at 550 °C by dip-coating technique using the solution synthesized by sol-gel method. The structural, surface morphology, optical and photocatalytic property of thin films were studied. X-ray diffraction (XRD) analysis showed that the Sn-doping greatly changed the microstructure, morphology and optical properties of ZnO films, which may contribute to the enhancement of photocatalytic activity. Additionally, the photocatalytic activity was investigated using methylene blue dye under solar irradiation, with has high UV index from 7 to 8. The results indicated that Sn-doped ZnO had a higher photocatalytic activity and Sn dopant greatly increased the photocatalytic activity of ZnO thin film.
Downloads
References
Kian MunLee, Chin WeiLai, Koh SingNgai, Joon ChingJuan, Water Research 88 (2016) 428-448. https://doi.org/10.1016/j.watres.2015.09.045
Khan, S. H., & Pathak, B., Environmental Nanotechnology, Monitoring & Management (2020) 100290. https://doi.org/10.1016/j.enmm.2020.100290
Ong, C. B., Ng, L. Y., & Mohammad, A. W, Renewable and Sustainable Energy Reviews 81 (2018) 536-551. https://doi.org/10.1016/j.rser.2017.08.020
Abebe, B., Murthy, H. A., & Amare, E., Environmental Nanotechnology, Monitoring & Management (2020) 100336. https://doi.org/10.1016/j.enmm.2020.100336
Bindhu, M. R., Ancy, K., Umadevi, M., Esmail, G. A., Al-Dhabi, N. A., & Arasu, M. V., Journal of Photochemistry and Photobiology B: Biology 210 (2020) 111965. https://doi.org/10.1016/j.jphotobiol.2020.111965
Majumder, S., Chatterjee, S., Basnet, P., & Mukherjee, J., Environmental Nanotechnology, Monitoring & Management (2020) 100386. https://doi.org/10.1016/j.enmm.2020.100386.
Weldegebrieal, G. K., Inorganic Chemistry Communications, 120 (2020) 108140. https://doi.org/10.1016/j.inoche.2020.108140
Talebian, N., Nilforoushan, M. R., & Ghasem, R. R., Journal of Sol-gel Science and Technology 64 (2012) 36-46. https://doi.org/10.1007/s10971-012-2825-4
Bosi Yin, Siwen Zhang, Dawei Zhang, Yang Jiao, Yang Liu, Fengyu Qu, and Xiang Wu., Journal of Nanomaterials 2014 (2017) 1-7. https://doi.org/10.1155/2014/186916
Di Mauro, A., Fragala, M. E., Privitera, V., & Impellizzeri, G., Materials Science in Semiconductor Processing 69 (2017) 44-51. https://doi.org/10.1016/j.mssp.2017.03.029
Podasca, V. E., & Damaceanu, M. D., Applied Sciences 10 (2020) 1954. https://doi.org/10.3390/app10061954
Vũ Viết Doanh, Lê Minh Kiệt, Lê Hải Đăng, Trịnh Quang Thông, Tạp chí Hoá học 58 (2020) 30-35.
Liu, Y., Chen, X., Xu, Y., Zhang, Q., & Wang, X., Journal of Nanomaterials (2014) 2014. https://doi.org/10.1155/2014/381819
Sun, J. H., Dong, S. Y., Feng, J. L., Yin, X. J., & Zhao, X. C., Journal of Molecular Catalysis A: Chemical 335 (2011) 145-150. https://doi.org/10.1016/j.molcata.2010.11.026
Zhang, N., Chu, D., & Wang, L., Surface and Interface Analysis 52 (2020) 91-97. https://doi.org/10.1002/sia.6724
Siva, N., Sakthi, D., Ragupathy, S., Arun, V., & Kannadasan, N., Materials Science and Engineering: B 253 (2020) 114497. https://doi.org/10.1016/j.mseb.2020.114497