Synthesis of molybdenum disulfide for the hydrogen evolution reaction electrocatalysts activity by electrochemical method
DOI:
https://doi.org/10.51316/jca.2022.037Keywords:
Thiomolybdates solution, Electrodeposition, HER, Molybdenum disulfideAbstract
This research aims to synthesize MoS2 thin film for the hydrogen evolution reaction (HER) by the electrochemical way. We investigated various electrochemical conditions, including the pH of electrolyte, the applied current density, and electrolysis time to find optimal synthesis mode. The obtained samples were characterized by scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns to determine the morphology and crystal structure. The polarization curve confirmed the HER activity of MoS2 thin film. The results indicated that the synthesized MoS2 film had a perfect catalytic activity, as shown by the overpotential value at 10 mA/cm2 and Tafel slope reached 144 mV and 56.2 mV/dec, respectively.
Downloads
References
T.Bak, J. Nowotny ,M. Rekas, C.C. Sorrell, Inter. J. of Hydrogen Energy 27 (2002) 991 – 1022. https://doi.org/10.1016/S0360-3199(02)00022-8.
Qi Ding, Bo Song, Ping Xu, Song Jin, Chem, 1 (2016) 699-726. https://doi.org/10.1016/j.chempr.2016.10.007
Uttam Gupta, C.N.R.Rao, Nano energy, 41 (2017) 49-65. https://doi.org/10.1016/j.nanoen.2017.08.021
Effat Sitara , Habib Nasir , Asad Mumtaz , Muhammad Fahad Ehsan , Manzar Sohail, Sadia Iram, Syeda Aqsa Batool Bukhari, Nanomaterials, 10 (2020) 2341. https://doi.org/10.3390/nano10122341
F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett, 105 (2010) 136805–136808. https://10.1103/PhysRevLett.105.136805
Vesborg P.C.K, Seger B, And Chorkendorff I, J. Phys. Chem. Lett., 6 (2015) 951–957. https://doi.org/10.1021/acs.jpclett.5b00306
Popczun E.J, Mckone J.R, Read, C.G, Biacchi A.J, Wiltrout A.M, Lewis N.S, And Schaak R.E, J. Am. Chem. Soc, 135 (2013) 9267–9270. https://doi.org/10.1021/ja403440e
Callejas J.F, Read C.G, Roske C.W, Lewis N.S, And Schaak R.E, 28 (2016) 6027–6044. https://doi.org/10.1021/acs.chemmater.6b02148
Caban-Acevedo M, Stone M.L, Schmidt J.R, Thomas J.G, Ding Q, Chang H.C, Tsai M.L, He J.H, Jin S, Nat. Mater,14 (2015) 1245–1251. https://doi.org/10.1038/nmat4410
Jaramillo T.F, Jorgensen K.P, Bonde J, Nielsen J.H, Horch S, And Chorkendorff I, Science, 317 (2007) 100-102. https://doi.org/10.1126/science.1141483.
Hinnemann B, Moses P.G, Bonde J, Jorgensen K.P, Nielsen J.H, Horch S, Chorkendorff I, Norskov J.K, J. Am. Chem. Soc, 127 (2015) 5308–5309. https://doi.org/10.1021/ja0504690
Zhenhua Lou, Di Wu, Kun Bu, Tingting Xu, Zhifeng Shi, Junmin Xu, Yongtao Tian, Xinjian Li, Journal of alloys and compounds, 726 (2017) 632- 637. https://doi.org/10.1016/j.jallcom.2017.07.338
Nahid Chaudhary, Manika Khanuja, Abid, S.S. Islam, Sensors and actuators A, 277 (2018) 190–198. https://doi.org/10.1016/j.sna.2018.05.008
Lijuan Ye, Haiyan Xu, , Shijian Chen, Material reseach bulletin, 55 (2014) 221-228. https://doi.org/10.1016/j.materresbull.2014.04.025
Shuang Liu, Changbin Nie, Dahua Zhou, Jun Shen, Shuanglong Feng, Physica E: low-dimensional systems and nanostructures, 117 (2020) 113592. https://doi.org/10.1016/j.physe.2019.113592
Jie Zhang, Tianyu Liu, Liangjie Fu, Gonglan Ye, Chemical physics letters, 781 (2021) 138972. https://doi.org/10.1016/j.cplett.2021.138972
Akif Shikhan Aliyev, Mahmoud Elrouby, Samira Fikret Cafarova, Materials science in semiconductor processing, 32, (2015) 31–39. https://doi.org/10.1016/j.mssp.2015.01.006
Megha Shrivastava, Reeta Kumari, Mohammad Ramzan Parra, Padmini Pandey, Hafsa Siddiqui, Fozia Z. Haque, Optical material, 73 (2017) 763-771. https://10.1016/j.optmat.2017.09.029
Lina Zhang, Liangliu Wu, Jing Li And Jinglei Lei, BMC chemistry,13:88 (2019) https://doi.org/10.1186/s13065-019-0600-0
Tzu Hsuan Chiang, Hung Che Yeh, Materials, 6 (2013) 4609-4625. https://10.3390/ma6104609
S.K. Ghosha, T. Bera, O. Karacasua, A. Swarnakar, J.G. Buijnsters, J.P. Celis, Electrochimica Acta, 56 (2011) 2433-2442.
https://10.1016/j.electacta.2010.10.065
Pravas Kumar Panigrahi, Amita Pathak, Journal of Nanoparticles, 2013, 671214. https://doi.org/10.1155/2013/671214
Tuhin Subhra Sahu, Sagar Mitra , Scientific Reports, 5 (2015) 12571. https://doi.org/10.1038/srep12571
Xia Li, Bo Wang, Xia Shu, Dongmei Wang, Guangqing Xu, Xinyi Zhang, Jun Lv, Yucheng Wu, RSC Advances, 9 (2019) 15900–15909. https://doi.org/10.1039/C8RA09806A
Xin-Wei Yang, Xiao-Ping Wang, Li-Jun Wang, Diamond and Related Materials, 114 (2021) 108331. https://doi.org/10.1016/j.diamond.2021.108331
Kai Xia, Meiyu Cong, Fanfan Xu, Xin Ding, and Xiaodong Zhang, Nanomaterials, 10 (2020) 1547. https://doi.org/10.3390/nano10081547
Xuebin Houa, Alfred Mensaha, Min Zhaoa, Yibing Caia, Qufu Wei, Applied surface science, 529 (2020) 147115. https://doi.org/10.1016/j.apsusc.2020.147115
Chia Chin cheng, Ang Yu Lu, Chien Chih Tseng, Xiulin Yang, Mohamed Nejib Hedhili, Min Cheng Chen, Kung Hwa Wei, Lain Jong Li, Nano energy, 30 (2016) 846-852. https://doi.org/10.1016/j.nanoen.2016.09.010
Shasha Li, Suchada Sirisomboonchai, Xiaowei An, Xuli Ma, Peng Li, Lixia Ling, Xiaogang Hao, Abuliti Abudula, Guoqing Guan, Nanoscale, 12 (2020) 6810-6820. https://doi.org/10.1039/D0NR00008F
Ruimin Ding, Mengchao Wang, Xianfen Wang, Huixiang Wang, Liancheng Wang, Yuewen Mu, Baoliang Lv , Nanoscale, 11 (2019) 11217-11226. https://doi.org/10.1039/C9NR02717C
Wen Li, Jun-wei Chen, Zong-liang Xiao, Jing-bo Xing, Chen Yang, Xiao-peng Qi, New Carbon Materials, 35 (2020) 540-546. https://10.1016/S1872-5805(20)60507-8
Zhiwen Chen, Xiao Liu, Peijun Xin, Haitao Wang, Ye Wu, Chunyan Gao, Qingquan He, Yong Jiang, Zhangjun Hu, Shoushuang Huang, Journal of Alloys and Compounds, 853 (2021) 157352. https://doi.org/10.1016/j.jallcom.2020.157352
Huan Chen, Haichao Jiang, Xuepu Cao, Yantao Zhang, Xiangjing Zhang, Shanlin Qiao, Materials Chemistry and Physics, 252 (2020) 123244. https://doi.org/10.1016/j.matchemphys.2020.123244
Mingwei Hu, Jin Huang, Qizhong Li, Rong Tu, Song Zhang, Meijun Yang, Haiwen Li, Takashi Goto, Lianmeng Zhang, Journal of Alloys and Compounds, 827 (2020) 154262. https://doi.org/10.1016/j.jallcom.2020.154262