The synthesis, characterization and application of Me(eIM)2 materials

Authors

  • Ta Ngoc Don School of Chemistry and Life Sciences, Hanoi University of Science and Technology
  • Le Van Duong School of Chemistry and Life Sciences, Hanoi University of Science and Technology
  • Nguyen Thi Hong Phuong School of Chemistry and Life Sciences, Hanoi University of Science and Technology
  • Nguyen Thi Thu Huyen School of Chemistry and Life Sciences, Hanoi University of Science and Technology
  • Ta Ngoc Thien Huy Kien Giang University
  • Nguyen Van Thanh Kien Giang University
  • Bui Thi Thanh Ha Hanoi University of Pharmacy

DOI:

https://doi.org/10.62239/jca.2024.024

Keywords:

Metal azolate frameworks, synthesis, characterization, application

Abstract

In recent years, it has been recognized that the bridging angle in Me−eIM−Me (Me: Zn or Co and eIM : 2-ethylimidazolate) is coincident with that of the Si−O−Si angle in zeolites (145°), and therefore it can make new metal azolate frameworks (MAFs) with topologies based on tetrahedral zeolites.

Me(eIM)2 belongs to the family of MAFs, has three isomers which have the same molecular formula but different topology (ANA-MAF-5, RHO-MAF-6 and qtz-MAF-32). These materials are hydrophobic, have large capillary diameters, thermally and hydrothermally stable, so they have different physical and chemical properties, leading to different applications in practice.

This review report collects results from more than 100 research papers related to Me(eIM)2 from 2006 to present and provides some recommendations on their synthesis, characterization and application in the future.

Downloads

Download data is not yet available.

References

X.C. Huang, Y.Y. Lin, J.P. Zhang, X.M. Chen, Angew. Chem., 45 (2006) 1557–1559. Doi: 10.1002/anie.200503778

C.T. He, L. Jiang, Z.M. Ye, R. Krishna, Z.S. Zhong, P.Q. Liao, J. Xu, G. Ouyang, J.P. Zhang and X.M. Chen, J. Am. Chem. Soc., 137(22) (2015) 7217–7223. Doi: 10.1021/jacs.5b03727

A.X. Zhu, R.B. Lin, X.L. Qi, Y. Liu, Y.Y. Lin, J.P. Zhang, X.M. Chen, Microporous and Mesoporous Materials, 157 (2012) 42–49. https://doi.org/10.1016/j.micromeso.2011.11.03

B.N. Bhadra, P.W. Seo, N.A. Khan and S.H. Jhung, Inorg. Chem., 55(21) (2016) 11362–11371. Doi: 10.1021/acs.inorgchem.6b01882

Chao Wang, Xinlong Yan, Xiaoyan Hu, Min Zhou, Zhonghai Ni, Journal of Molecular Liquids, 223 (2016) 427–430. https://doi.org/10.1016/j.molliq.2016.08.056

Biswa Nath Bhadra and Sung Hwa Jhung, ACS Appl. Mater. Interfaces, 8(10) (2016) 6770–6777.

https://doi.org/10.1021/acsami.6b00608

C. Gao, Q. Shi and J. Dong, CrystEngComm, 18 (2016) 3842–3849. https://doi.org/10.1039/C6CE00249H

M. Sarker, B.N. Bhadra, P.W. Seo, S.H. Jhung, Journal of Hazardous Materials, 324 (2017) 131–138. https://doi.org/10.1016/j.jhazmat.2016.10.042

Ana Martin-Calvo, Juan Jose Gutierrez-Sevillano, David Dubbeldam and Sofia Calero, Adv. Theory Simul., 2 (2019) 1900112. https://doi.org/10.1002/adts.201900112

R.M. Madero-Castro, R.M. Madero-Castro, J.M. Vicent-Luna and S. Calero, J. Phys. Chem. C, 123(39) (2019) 23987–23994. https://doi.org/10.1021/acs.jpcc.9b05508

Jing Wang, Jinglan Wu, Bin Zheng, Jiang Wang, Qi Shi, Jinxiang Dong, Chemical Engineering Science, 248 (2022) 117251. https://doi.org/10.1016/j.ces.2021.117251

Yipeng Zhou, Jinfeng Men, Xiaowei Wang, Xiaowei Wang, Chengqiang Liang, Yudong Xie and Hao Ding, J. Phys. Chem. C, 127(7) (2023) 3551-3562. https://doi.org/10.1021/acs.jpcc.2c07990

Ren-Xuan Yang, Yen-Tsz Bieh, Celine H. Chen, Chang-Yen Hsu, Yuki Kato, Hideki Yamamoto, Chia-Kuang Tsung and Kevin C.-W. Wu, ACS Sustainable Chem. Eng., 9(19) (2021) 6541–6550. https://doi.org/10.1021/acssuschemeng.0c08012

M.N. Timofeeva, I.A. Lykoyanov, V.N. Panchenko, K.I. Shefer, B.N. Bhadra and S.H. Jhung, Ind. Eng. Chem. Res., 58(25) (2019) 10750–10758. https://doi.org/10.1021/acs.iecr.9b00655

M. Sarker, B.N. Bhadra, S. Shin and S.H. Jhung, ACS Appl. Nano Mater., 2(1) (2019) 191–201. https://doi.org/10.1021/acsanm.8b01841

M.M.H. Mondol, B.N. Bhadra, S.H. Jhung, Applied Catalysis B: Environmental, 288 (2021) 119988. https://doi.org/10.1016/j.apcatb.2021.119988

Marjan Razavian, Shohreh Fatemi, Journal of Analytical and Applied Pyrolysis, 156 (2021) 105093. https://doi.org/10.1016/j.jaap.2021.105093

K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Proc. Nalt. Acad. Sci. U.S.A., 103(27) (2006) 10186–10191. Doi: 10.1073/pnas.0602439103

O.M. Yaghi and Hailian Li, J. Am. Chem. Soc., 117 (1995) 10401–10402. https://doi.org/10.1021/ja00146a033

Jingyu Tian, Cuiming Lu, Chun-Ting He,Tong-Bu Lu, Gangfeng Ouyang, Talanta, 152 (2016) 283–287. https://doi.org/10.1016/j.talanta.2016.02.007

Don N. Ta, Hong K.D. Nguyen, Bai X. Trinh, Quynh T.N. Le and Hung N. Ta, The Canadian Journal of Chemical Engineering, 96(7) (2018) 1518-1531. https://doi.org/10.1002/cjce.23155 60

Le Van Duong, Dinh Quang Toan, Pham Thu Huong, Le Ngoc Duong, Nguyen Thi Xuan, Ninh Thi Phuong, Ta Ngoc Don, Vietnam Journal of Catalysis and Adsorption, 7(1) (2018) 123–128. https://chemeng.hust.edu.vn/jca/20-volumes-and-issues/vol-7-2018-2 0

Vy Anh Tran, Le Thi Nhu Quynh, Thu-Thao Thi Vo, Phuc An Nguyen, Ta Ngoc Don, Yasser Vasseghian, Hung Phan, Sang-Wha Lee, Environmental Research, 204(D) (2022) 112364. https://doi.org/10.1016/j.envres.2021.112364 26

William Morris, Christian J. Doonan, Hiroyasu Furukawa, Rahul Banerjee and Omar M. Yaghi, J. Am. Chem. Soc., 130 (2008) 12626–12627. Doi: 10.1021/ja805222x

R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe and O.M. Yaghi, Science, 319 (2008) 939. Doi: 10.1126/science.1152516

B.Z. Zhan, M.A. White, M. Lumsden, J. Mueller-Neuhaus, K.N. Robertson, T.S. Cameron and M. Gharghouri, Chem. Mater., 14 (2002) 3636–3642. https://doi.org/10.1595/205651315X689874

Ta Ngoc Don, Vu Dao Thang, Pham Thanh Huyen, Pham Minh Hao, Nguyen K.D. Hong, Studies in Surface Science and catalysis, 159 (2006) 197–200. https://doi.org/10.1016/S0167-2991(06)81567-3 6

Ta Ngoc Don, Ta Ngoc Hung, Pham Thanh Huyen, Trinh Xuan Bai, Huynh T.T. Huong, Nguyen Thi Linh, Le Van Duong and Minh-Hao Pham, Indian Journal of Chemical Technology, 23(5) (2016) 392–399. http://nopr.niscpr.res.in/handle/123456789/35507 11

Hong K.D. Nguyen, Don N. Ta, Hung N. Ta, Journal of Applicable Chemistry, 6(1) (2017) 50–68. http://www.joac.info/ContentPaper/2017/10.pdf 9

Vy Anh Tran, Van Dat Doan, Van Thuan Le, Thanh-Quang Nguyen, Ta Ngoc Don, Vo Vien, Nguyen Thanh Luan and Giang N. L. Vo (2023), Ind. Eng. Chem. Res. 62(11) (2023) 4738–4753. https://doi.org/10.1021/acs.iecr.2c04399 6

Ta Ngoc Don, Nguyen Thi Hong Phuong, Nguyen Thi Minh Thu, Nguyen Thi Thu Huyen, Trinh Xuan Bai, Ta Ngoc Thien Huy, Danh Mo, Ngo Trong Nghia, Ha Thi Lan Anh, Nguyen Thi Linh, Bui Thi Thanh Ha, Trinh Thi Hai, Vietnam Journal of Catalysis and Adsorption, 12(3) 1–16. https://doi.org/10.51316/jca.2023.041 0

Ta Ngoc Don, Nguyen Thi Hong Phuong, Nguyen Thi Minh Thu, Nguyen Thi Thu Huyen, Ta Ngoc Thien Huy, Nguyen Van Thanh, Danh Mu, Ngu Trong Nghia, Pham Thi Mai Huong, Nguyen Thi Linh, Ha Thi Lan Anh, Bui Thi Thanh Ha, Tran Anh Vy, Trinh Thi Hai, Vietnam Journal of Catalysis and Adsorption, 12(4) 1-18. https://doi.org/10.62239/jca.2023.060 0

P.J. Beldon, L. Fábián, R.S. Stein, A. Thirumurugan, A.K. Cheetham, T. Friščić, Angewandte Chemie International Edition, 49(50) (2010) 9640–9643. https://doi.org/10.1002/anie.201005547

T. Stassin, I. Stassen, J. Marreiros, A.J. Cruz, R. Verbeke, M. Tu, H. Reinsch, M. Dickmann, W. Egger, I. Vankelecom, D.D. Vos, R. Ameloot, ChemRxiv., doi: 10.26434/chemrxiv. 9860891.v1

Y.T. Xu, X. Xiao, Z.M. Ye, S. Zhao, R. Shen, C.T. He, J.P. Zhang, Y. Li and X.M. Chen, J. Am. Chem. Soc., 139(15) (2017) 5285–5288. Doi: 10.1021/jacs.7b00165

S. Wang, T. Wang, P. Liu, Y. Shi, G. Liu, J. Li, Materials Research Bulletin, 88 (2017) 62–68. https://doi.org/10.1016/j.materresbull.2016.11.039

M. Gao, J. Wang, Z. Rong, Q. Shi and J. Dong, RSC Adv., 8 (2018) 39627. https://doi.org/10.1039/C8RA08460B

Q. Liu, Y. Li, Q. Li, G. Liu, G. Liu, W. Jin, Separation and Purification Technology, 214 (2019) 2–10. https://doi.org/10.1016/j.seppur.2018.01.050

R. Khan, I.U. Haq, H. Mao, A.S. Zhang, L.H. Xu, H.G. Zhen, Z.P. Zhao, Separation and Purification Technology, 256 (2021) 117804. https://doi.org/10.1016/j.seppur.2020.117804

M.M.H. Mondol, S.H. Jhung, Fuel, 307 (2022) 121764. https://doi.org/10.1016/j.fuel.2021.121764

O. Guselnikova, O. Semyonov, M. Kirgina, A. Ivanov, A. Zinoviev, P. Postnikov, Journal of Environmental Chemical Engineering, 10 (2022) 107105. https://doi.org/10.1016/j.jece.2021.107105

Q. Li, L. Cheng, J. Shen, J. Shi, G. Chen, J. Zhao, J. Duan, G. Liu, W. Jin, Separation and Purification Technology, 178 (2017) 105–112. https://doi.org/10.1016/j.seppur.2017.01.024

G. Wu, Q. Fan, W. Sun, Z. Yu, Z. Jia, J. Ma, Chinese Journal of Chemical Engineering, 42 (2022) 312–318. https://doi.org/10.1016/j.seppur.2017.01.024

B. Mortada, G. Chaplais, H. Nouali, C. Marichal and J. Patarin, J. Phys. Chem. C, 123 (2019) 4319−4328. Doi: 10.1021/acs.jpcc.8b12047

K. Xue, X. Lan, J. Wang and T. Wang, Catalysis Letters, 150 (2020) 3234–3242. Doi: 10.1007/s10562-020-03212-0

Takaya Kaneshige, Hikaru Sakamoto and Masataka Ohtani, Chem. Commun., 58 (2022) 4588–4591. https://doi.org/10.1039/D2CC00486K

D. Danaci, R. Singh, P. Xiao, P.A. Webley, Chemical Engineering Journal, 280 (2015) 486–493. https://doi.org/10.1016/j.cej.2015.04.090

S. Bhattacharyya, R. Han, W.G. Kim, Y. Chiang, K.C. Jayachandrababu, J.T. Hungerford, M.R. Dutzer, C. Ma, K.S. Walton, D.S. Sholl and S. Nair, Chem. Mater., 30(12) (2018) 4089–4101. https://doi.org/10.1021/acs.chemmater.8b01394

O. Shimomura, H. Furuya, D. Fukumoto, A. Ohtaka and R. Nomura, ACS Omega, 6(45) (2021) 30292–30297. https://doi.org/10.1021/acsomega.1c02619

Jingyu Tian, CuimingLu, Chun-Ting He, Tong-Bu Lu, Gangfeng Ouyangn, Talanta, 152 (2016) 283–287. https://doi.org/10.1016/j.talanta.2016.02.007

S.D. Worrall, H.Mann, A. Rogers, M.A. Bissett, M.P. Attfield, R.A.W. Dryfe, Electrochimica Acta, 197 (2016) 228. 10.1016/j.electacta.2016.02.145

Q. Li, L. Cheng, J. Shen, J. Shi, G. Chen, J. Zhao, J. Duan, G. Liu, W. Jin, Separation and Purification Technology, 178 (2017) 105–112. https://doi.org/10.1016/j.seppur.2017.01.024

X.W. Zhang, L. Jiang, Z.W. Mo, H.L. Zhou, P.Q. Liao, J.W. Ye, D.D. Zhou and J.P. Zhang, J. Mater. Chem. A, 5 (2017) 24263. https://doi.org/10.1039/C7TA06996K

Y. Zhao, J. Xu, J. Wang, J. Wu, M. Gao, B. Zheng, H. Xu, Q. Shi and J. Dong, Ind. Eng. Chem. Res., 59(25) (2020) 11734–11742. https://doi.org/10.1021/acs.iecr.0c01415

T. Stassin, I. Stassen, J. Marreiros, A.J. Cruz, R. Verbeke, M. Tu, H. Reinsch, M. Dickmann, W. Egger, I.F.J. Vankelecom, D.E.D. Vos and R. Ameloot, Chem. Mater., 32(5) 2020 1784–1793. https://doi.org/10.1021/acs.chemmater.9b03807

Takaya Kaneshige, Hikaru Sakamoto and Masataka Ohtani, Chem. Commun., 58 (2022) 4588-4591. https://doi.org/10.1039/D2CC00486K

Jin-Jian Zhou, Meng Zhang, Jie Lu, Meng-Xuan Gu, Yu-Xia Li, Xiao-Qin Liu and Lin-Bing Sun, Inorganic Chemistry, 60(9) (2021) 6633–6640. https://doi.org/10.1021/acs.inorgchem.1c00438

A.X. Zhu, R.B. Lin, X.L. Qi, Y. Liu, Y.Y. Lin, J.P. Zhang, X.M. Chen, Microporous Mesoporous Mater., 157 (2012) 42.

M.N. Timofeeva, I.A. Lykoyanov, V.N. Panchenko, K.I. Shefer, B.N. Bhadra and S.H. Jhung, Ind. Eng. Chem. Res.. 58(25) (2019) 10750–10758.

https://doi.org/10.1021/acs.iecr.9b00655

B.N. Bhadra, P.W. Seo, N.A. Khan and S.H.Jhung, Inorg. Chem., 55(21) (2016) 11362–11371. https://doi.org/10.1021/acs.inorgchem.6b01882

I. Ahmed, S.H. Jhung, Chemical Engineering Journal (Elsevier), 310 (2017) 197–215. https://doi.org/10.1016/j.cej.2016.10.115

M. Zhang, W. Zhu, H. Li, S. Xun, M. Li, Y. Li, Y. Wei, H. Li, Chinese Journal of Catalysis, 37(6) (2016) 971–978. https://doi.org/10.1016/S1872-2067(15)61103-2

W.Jiang, W. Zhu, H. Li, Y. Chao, S. Xun, Y. Chang, H. Li, Z. Zhao, Journal of Molecular Catalysis A: Chemical, 382 (2014) 8–14. https://doi.org/10.1016/j.molcata.2013.10.017

Jian Zhang, Anjie Wang, Xiang Li, Xuehu Ma, Journal of Catalysis, 279(2) (2011) 269–275. https://doi.org/10.1016/j.jcat.2011.01.016

R. Ghubayra, C. Nuttall, S. Hodgkiss, M. Craven, E.F. Kozhevnikova, I.V. Kozhevnikov, Applied Catalysis B: Environmental, 253 (2019) 309–316. https://doi.org/10.1016/j.apcatb.2019.04.063

G. Yang, X. Zhang, H. Yang, Y. Long, J. Ma, J. Colloid. Interface Sci., 532 (2018) 92–102. https://doi.org/10.1016/j.jcis.2018.07.074

Y. Du, L. Zhou, Z. Liu, Z. Guo, X. Wang, J. Lei, Chemical Engineering Journal, 387 (2020) 124056. https://doi.org/10.1016/j.cej.2020.124056

E. Torres-García, A. Galano, G. Rodriguez-Gattorno, Journal of Catalysis, 282(1) (2011) 201–208. https://doi.org/10.1016/j.jcat.2011.06.010

Limin Chen, Can Liu, Zhengjun Zhang, Electrochimica Acta, 245 (2017) 237–248. https://doi.org/10.1016/j.electacta.2017.05.102

Botao Zhang, Guanglei Cui, Kejun Zhang, Lixue Zhang, Pengxian Han, Shanmu Dong, Electrochimica Acta, 150 (2014) 15–22. https://doi.org/10.1016/j.electacta.2014.10.113

Lixia Wang, Juncai Sun, Journal of Renewable and Sustainable Energy, 5 (2013) 021407. https://doi.org/10.1063/1.4798437

Y.Z. Chen, R. Zhang, L. Jiao, H.L. Jiang, Coordination Chemistry Reviews, 362 (2018) 1–23. https://doi.org/10.1016/j.ccr.2018.02.008

Biswa Nath Bhadra, Ajayan Vinu, Christian Serre, Sung Hwa Jhung, 25 (2019) 88–111. https://doi.org/10.1016/j.mattod.2018.10.016

L. Villaseca, B. Moreno, I. Lorite, J.R. Jurado, E. Chinarro, Ceramics International, 41(3) (2015) 4282–4288. https://doi.org/10.1016/j.ceramint.2014.11.114

Ming Zhang, Jiaqi Liu, Hongping Li, Yanchen Wei, Yujie Fu, Wanying Liao, Linhua Zhu, Guangying Chen, Wenshuai Zhu, Huaming Li, Applied Catalysis B: Environmental, 271 (2020) 118936. https://doi.org/10.1016/j.apcatb.2020.118936

Michael Craven, Dong Xiao, Casper Kunstmann-Olsen, E.F. Kozhevnikova, Frédéric Blanc, Alexander Steiner, Ivan V. Kozhevnikov, Applied Catalysis B: Environmental, 231 (2018) 82–91. https://doi.org/10.1016/j.apcatb.2018.03.005

B.N. Bhadra, S.H. Jhung, Chemical Engineering Journal, 419 (2021) 129485. https://doi.org/10.1016/j.cej.2021.129485

M. Sarker, B.N. Bhadra, S. Shin and S.H. Jhung, ACS Appl. Nano Mater., 2(1) (2019) 191–201. https://doi.org/10.1021/acsanm.8b01841

Suib, S.L. (Ed.) New and Future Developments in Catalysis: Activation of Carbon Dioxide; Elsevier: Amsterdam, The Netherlands, 2013, ISBN: 9780444538833.

B.M. Bhanage, M. Arai, (Eds.) Transformation and Utilization of Carbon Dioxide, Springer: New York, NY, USA, 2014, ISBN: 978-3-642-44988-8.

NexantECA. Market Analytics: Ammonia and Urea – 2020, London, UK, 2021.

ADROIT Market Research: Salicylic Acid Market, 2019.

M.H. Beyzavi, C.J. Stephenson, Y. Liu, O. Karagiaridi, J.T. Hupp, O.K. Farha, Front. Energy Res. 2 (2015) 10. https://doi.org/10.3389/fenrg.2014.00063

H. He, J.A. Perman, G. Zhu, S. Ma, Small, 12 (2016) 6309–6324. https://doi.org/10.1002/smll.201602711

J. Song, Z. Zhang, S. Hu, T. Wu, T. Jiang, B. Han, Green. Chem., 11 (2009) 1301–1336. Doi: 10.1039/b902550b

M.N. Timofeeva, I.A. Lukoyanov, V.N. Panchenko, K.I. Shefer, M.S. Mel'gunov, B.N. Bhadra, S.H. Jhung, Molecular Catalysis, 529 (2022) 112530. https://doi.org/10.1016/j.mcat.2022.112530

M.N. Timofeeva, I.A. Lukoyanov, V.N. Panchenko, B.N. Bhadra, E.Y. Gerasimov, S.H. Jhung, Catalysts, 11 (2021) 1061. https://doi.org/10.3390/catal11091061

K. Tanabe, W.F. Hölderich, Appl. Catal. A, 181 (1999) 399–434. https://doi.org/10.1016/S0926-860X(98)00397-4

R.E. Parker, N.S. Isaacs, Chem. Rev., 59 (1959) 737–799. https://doi.org/10.1021/cr50028a006

L. Martins, W. Hölderich, D. Cardoso, J. Catal., 258 (2008) 14–24. https://doi.org/10.1016/j.jcat.2008.05.018

H.A. Pecorini and J.T. Banchero, Ind. Eng. Chem., 48 (1956) 1287–1297.

https://doi.org/10.1021/ie50560a028

W.Y. Zhang, H. Wang, Q.B. Li, Q.N. Dong, N. Zhao, W. Wei, Y. Sun, Appl. Catal. A, 294 (2005) 188–196. https://doi.org/10.1016/j.apcata.2005.07.005

M.N. Timofeevaa, A.E. Kapustinc, V.N. Panchenkoa, E.O. Butenkoc, V.V. Krupskaya, A. Gilf, M.A. Vicente, Journal of Molecular Catalysis A: Chemical, 423 (2016) 22–30. https://doi.org/10.1016/j.molcata.2016.06.006

J. Scheirs, W. Kaminsky, Feedstock recycling and pyrolysis of waste plastics: converting waste plastics into diesel and other fuels, Chichester, UK: John Willey & Sons, (2006) 642. ISBN: 978-0-470-02152-1.

D.S. Achilias, G.P. Karayannidis, Water Air Soil Pollut, 4 (2004) 385–96. https://doi.org/10.1023/B:WAFO.0000044812.47185.0f

S.R. Shukla, A.M. Harad, L.S. Jawale, Waste Manage, 28 (2008) 51–6. Doi: 10.1016/j.wasman.2006.11.002

J.M. Trowell, U.S. patent (1988) 4,720,571.

D.J. Suh, O.O. Park, K.H. Yoon, Polymer, 41 (2000) 461. https://doi.org/10.1016/S0032-3861(99)00168-8

M. Imran, B.K. Kim, M. Han, B.G. Cho, D.H. Kim, Polymer Degradation and Stability, 95 (2010) 1686–1693. 10.1016/j.polymdegradstab.2010.05.026

Y. Guo, K. Xu, C. Wu, J. Zhao, Y. Xie, Chem. Soc. Rev., 44 (2015) 637. https://doi.org/10.1039/C4CS00302K

B. Wang, W. Liang, Z. Guo, W. Liu, Chem. Soc. Rev., 44 (2015) 336. https://doi.org/10.1039/C4CS00220B

A.X. Zhu, R.B. Lin, X.L. Qi, Y. Liu, Y.Y. Lin, J.P. Zhang, X.M. Chen, Microporous Mesoporous Mater., 157 (2012) 42. https://doi.org/10.1016/j.micromeso.2011.11.033

D.K. Verma, K. des Tombe, AIHA J., 63 (2002) 225. https://doi.org/10.1080/15428110208984708

M.A. Hanif, S. Nisar, U. Rashid, Catal. Rev., 59 (2017) 165. https://doi.org/10.1080/01614940.2017.1321452

S.R. Naqvi, A. Bibi, M. Naqvi, T. Noor, A.S. Nizami, M. Rehan, M. Ayoub, Appl. Petrochem. Res., 8 (2018) 131. https://doi.org/10.1007/s13203-018-0204-y

H. Yildirim, T. Greber, A. Kara, J. Phys. Chem. C, 117 (2013) 20572. https://doi.org/10.1021/jp404487z

R. Nithyanandam, Y.K. Mun, T.S. Fong, T.C. Siew, O.S. Yee, N. Ismail, J. Eng. Sci. Technol., 13 (2018) 4290. https://jestec.taylors.edu.my/V13Issue12.htm

D. Krepel, O. Hod, J. Phys. Chem. C, 117 (2013) 19477. https://doi.org/10.1021/jp4057412

F. Su, C. Lu, S. Hu, Colloids Surf. A, 353 (2010) 83. https://doi.org/10.1016/j.colsurfa.2009.10.025

J.W. Choi, N.C. Choi, S.J. Lee, D.J. Kim, J. Colloid Interface Sci., 314 (2007) 367. https://doi.org/10.1016/j.jcis.2007.05.070

N. Sivasankar, S. Vasudevan, J. Phys. Chem. B, 108 (2004) 11585. https://doi.org/10.1021/jp048399r

W. Huang, J. Jiang, D. Wu, J. Xu, B. Xue, A.M. Kirillov, Inorg. Chem., 54 (2015) 10524. https://doi.org/10.1021/acs.inorgchem.5b01581

M. Ghiaci, A. Abbaspur, R. Kia, F. Seyedeyn-Azad, Sep. Purif. Technol., 40 (2004) 217. https://doi.org/10.1016/j.seppur.2004.03.001

Xuemei Wang, Juan Wang, Tongtong Du, Haixia Kou, Xinzhen Du, Xiaoquan Lu, Talanta, 214 (2020) 120866. https://doi.org/10.1016/j.talanta.2020.120866

D.I. Kolokolov, L. Diestel, J. Caro, D. Freude, A.G. Stepanov, J. Phys. Chem. C, 118 (2014) 12873–12879. https://doi.org/10.1021/jp5026834

B.O. Abo, M. Gao, Y. Wang, C. Wu, Q. Wang, H. Ma, Environ. Sci. Pollut. Res. Int., 26(20) (2019) 20164–20182. doi: 10.1007/s11356-019-05437-y

N. Abdehagh, F.H. Tezel, J. Thibault, Biomass Bioenergy, 60 (2014) 222–246. Doi: 10.4236/ajac.2020.114013

A. Oudshoorn, L.A.M. van der Wielen, A.J.J. Straathof, Ind. Eng. Chem. Res., 48 (15) (2009) 7325–7336. Doi:10.1021/ie900537w

C. Di, H. Song, P. Qin, T. Tan, Separation of Butanol Acetone and Ethanol, Wiley-VCH Verlag GmbH & Co. KgaA (2018). https://doi.org/10.1002/9783527803293.ch14

M. Han, K. Jiang, P. Jiao, Y. Ji, J. Zhou, W. Zhuang, Y. Chen, D. Liu, C. Zhu, X. Chen, H. Ying, J. Wu, Sci. Rep., 7 (2017) 11753. https://doi.org/10.1038/s41598-017-12062-7

F. Raganati, A. Procentese, G. Olivieri, M.E. Russo, P. Salatino, A. Marzocchella, Sep. Purif. Technol., 191 (2018) 328–339. https://doi.org/10.1016/j.seppur.2017.09.059

M. Miyamoto, H. Iwatsuka, Y. Oumi, S. Uemiya, S. Van den Perre, G.V. Baron, J.F.M. Denayer, Chem. Eng. J., 363 (2019) 292–299. https://doi.org/10.1016/j.cej.2019.01.106

Y. Lin, S. Tanaka, Appl. Microbiol. Biotechnol., 69 (2006) 627–642. https://doi.org/10.1007/s00253-005-0229-x

Y.K. Ong, G.M. Shi, N.L. Le, Y.P. Tang, J. Zuo, S.P. Nunes, T.S. Chung, Prog. Polym. Sci., 57 (2016) 1–31. https://doi.org/10.1016/j.progpolymsci.2016.02.003

X. Zhan, J. Lu, T. Tan, J. Li, Appl. Surf. Sci., 259 (2012) 547. https://doi.org/10.1016/j.apsusc.2012.05.167

V.V. Volkov, A.G. Fadeev, V.S. Khotimsky, E.G. Litvinova, Y.A. Selinskaya, J.D. McMillan, S.S. Kelley, J. Appl. Polym. Sci., 91 (2004) 2271–2277. https://doi.org/10.1002/app.13358

J. Gu, X. Shi, Y. Bai, H. Zhang, L. Zhang, H. Huang, Chem. Eng. Technol., 32 (2009) 155–160. https://doi.org/10.1002/ceat.200800252

L. Ngoc Lieu, Y. Wang, T.S. Chung, J. Membr. Sci., 379 (2011) 174–183. https://doi.org/10.1016/j.memsci.2011.05.060

P. Sukitpaneenit, T.S. Chung, L.Y. Jiang, J. Membr. Sci., 362 (2010) 393–406. https://doi.org/10.1016/j.memsci.2010.06.062

T.S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Prog. Polym. Sci., 32 (2007) 483–507. https://doi.org/10.1016/j.progpolymsci.2007.01.008

Y.M. Xu, T.-S. Chung, J. Membr. Sci., 531 (2017) 16–26. https://doi.org/10.1016/j.memsci.2017.02.041

C.T. He, L. Jiang, Z.M. Ye, R. Krishna, Z.S. Zhong, P.Q. Liao, J. Xu, G. Ouyang, J.P. Zhang, X.M. Chen, J. Am. Chem. Soc., 137 (2015) 7217–7223. https://doi.org/10.1021/jacs.5b03727

G.P. Liu, W. Wei, H. Wu, X.L. Dong, M. Jiang, W.Q. Jin, J. Membr. Sci., 373 (2011) 121–129. https://doi.org/10.1016/j.memsci.2011.02.042

C.P. Ribeiro, B.D. Freeman, D.R. Paul, Polymer, 52(18) (2011) 3970–3983. Doi:10.1016/j.polymer.2011.06.042

H.L. Zhou, R.H. Shi, W.Q. Jin, Sep. Purif. Technol., 127 (2014) 61–69. https://doi.org/10.1016/j.seppur.2014.02.032

P. Guan, C. Ren, H. Shan, D. Cai, P. Zhao, D. Ma, P. Qin, S. Li and Z. Si, Colloid and Polymer Science, 299 (2021) 1459–1468. https://doi.org/10.1007/s00396-021-04873-y

G. Wu, Q. Fan, W. Sun, Z. Yu, Z. Jia, J. Ma, Chinese Journal of Chemical Engineering, 42 (2022) 312–318. https://doi.org/10.1016/j.cjche.2021.02.011

Y.S. Jeong, J.S. Chung, Process Biochem., 41(5) (2006) 1141–1147. https://doi.org/10.1016/j.procbio.2005.12.010

M.Y. Jin, Y. Lin, Y. Liao, C.H. Tan, R. Wang, J. Membr. Sci., 568 (2018) 121–133. https://doi.org/10.1016/j.memsci.2018.09.057

D. Li, J. Yao, H. Sun, B. Liu, D. Li, S. van Agtmaal, C. Feng, Chem. Eng. Res. Des., 132 (2018) 424–435. https://doi.org/10.1016/j.cherd.2018.01.045

T. Gupta, N.C. Pradhan, B. Adhikari, J. Membr. Sci., 217(1-2) (2003) 43–53. https://doi.org/10.1016/S0376-7388(03)00069-3

B.N. Bhadra, S.H. Jhung, J. Hazard. Mater., 340 (2017) 179–188. https://doi.org/10.1016/j.jhazmat.2017.07.011

B.N. Bhadra, L.K. Shrestha and K. Ariga, CrystEngComm, 24 (2022) 6804. https://doi.org/10.1039/D2CE00872F

B.N. Bhadra, A. Vinu, C. Serre and S.H. Jhung, Mater. Today, 25 (2019) 88. https://doi.org/10.1016/j.mattod.2018.10.016

H.J. An, B.N. Bhadra, N.A. Khan and S.H. Jhung, Chem. Eng. J., 343 (2018) 447. https://doi.org/10.1016/j.cej.2018.03.025

I. Ahmed, B.N. Bhadra, H.J. Lee, S.H. Jhung, Catalysis Today, 301 (2018) 90–97. https://doi.org/10.1016/j.cattod.2017.02.011

N.A. Khan, S.H. Jhung, J. Hazard Mater., 325 (2017) 198. https://doi.org/10.1016/j.jhazmat.2016.11.070

M.M.H. Mondol, S.H. Jhung, J. Hazard Mater., 439 (2022) 129659. https://doi.org/10.1016/j.jhazmat.2022.129659

J.Y. Song, B.N. Bhadra, S.H. Jhung, Microporous and Mesoporous Materials, 243 (2017) 221–228. https://doi.org/10.1016/j.micromeso.2017.02.024

B.N. Bhadra, P.W. Seo, S.H. Jhung, Chemical Engineering Journal, 301 (2016) 27–34. https://doi.org/10.1016/j.cej.2016.04.143

X. Chen, J.L. Nielsen, K. Furgal, Y. Liu, I.B. Lolas, K. Bester, Chemosphere, 84(4) (2011) 452–456. https://doi.org/10.1016/j.chemosphere.2011.03.042

M. Jiang, W. Yang, Z. Zhang, Z. Yang, Y. Wang, Journal of Environmental Sciences, 31 (2015) 226–234. https://doi.org/10.1016/j.jes.2014.09.035

S. Wang, T. Wang, P. Liu, Y. Shi, G. Liu, J. Li, Materials Research Bulletin, 88 (2017) 62–68. https://doi.org/10.1016/j.materresbull.2016.11.039

B.N. Bhadra, J.Y. Song, S.K. Lee, Y.K. Hwang, S.H. Jhung, J. Hazard Mater., 344 (2018) 1069–1077. https://doi.org/10.1016/j.jhazmat.2017.11.057

B.N. Bhadra, S.H. Jhung, J. Hazard Mater., 340 (2017) 179–188. https://doi.org/10.1016/j.jhazmat.2017.07.011

Quentin Pujol, Guy Weber, Jean-Pierre Bellat, Sven Grätz, Annika Krusenbaum, Lars Borchardt, Igor Bezverkhyy, Microporous and Mesoporous Materials, 344 (2022) 112204. https://doi.org/10.1016/j.micromeso.2022.112204

M. Sarker S. Shin, S.H. Jhung, J. Hazard Mater., 378 (2019) 120761. Doi: 10.1016/j.jhazmat.2019.120761.

M.A. Hossain, M.M.H. Mondol, S.H. Jhung, Chemosphere, 303 (2022) 134890. https://doi.org/10.1016/j.chemosphere.2022.1348

J.Y. Song, B.N. Bhadra, N.A. Khan, S.H. Jhung, Microporous and Mesoporous Materials, 260 (2018) 1–8. https://doi.org/10.1016/j.micromeso.2017.10.021

C.Y. Lin, C. Lu, Renew Sustain Energy Rev., 136 (2021) 110445. Doi: 10.1016/j.rser.2020.110445

C. Yang, R. Li, C. Cui, S. Liu, Q. Qiu, Y. Ding, et al., Green Chem., 18(13) (2016) 3684–99.https://doi.org/10.1039/C6GC01239F

F. Li, S.C. Srivatsa, S. Bhattacharya, Renew Sustain Energy Rev., 108 (2019) 481–97. https://doi.org/10.1016/j.rser.2019.03.026

I. Ahmed, S.H. Jhung, J. Hazard Mater., 301 (2016) 259. https://doi.org/10.1016/j.jhazmat.2015.08.045

B.N. Bhadra, S.H. Jhung, Appl. Catal. B: Environ, 259 (2019) 118021. https://doi.org/10.1016/j.apcatb.2019.118021

D.M. Xue, S.C. Qi, A.Z. Zeng, R.J. Lu, J.H. Long, C. Luo, et al., Chem. Eng. J., 374 (2019) 1005–12. https://doi.org/10.1016/j.cej.2019.06.024

N.A. Khan, H.J. An, D.K. Yoo, S.H. Jhung, J. Hazard Mater., 360 (2018) 163–71. https://doi.org/10.1016/j.jhazmat.2018.08.001

M. Ahmadi, M. Mohammadian, M.R. Khosravi-Nikou, A. Baghban, J. Hazard Mater., 374 (2019) 129–39. https://doi.org/10.1016/j.jhazmat.2019.04.029

M.M.H. Mondol, B.N. Bhadra, S.H. Jhung, Fuel, 280 (2020) 118622. https://doi.org/10.1016/j.fuel.2020.118622

B.N. Bhadra, P.W. Seo, S.H. Jhung, Chem. Eng. J., 301 (2016) 27–34. https://doi.org/10.1016/j.cej.2016.04.143

N.A. Khan, S. Shin, S.H. Jhung, Chemical Engineering Journal, 381 (2020) 122675. https://doi.org/10.1016/j.cej.2019.122675

G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev., 41 (2012) 797–828. https://doi.org/10.1039/C1CS15060J

J. Hou, C. Cao, F. Idrees, X. Ma, ACS Nano., 9 (2015) 2556–2564. https://doi.org/10.1021/nn506394r

Z.S. Wu, K. Parvez, X. Feng, K. Müllen, Nat. Commun., 4 (2013) 1–8. https://doi.org/10.1038/ncomms3487

H. Zhu, J. Liu, Q. Zhang, J. Wei, Inter. J. Energy Research, 44(11) (2020) 8654–8665. https://doi.org/10.1002/er.5554

W.L. Wu, Y.T. Xu, X. Ke, Y.M. Chen, Y.F. Cheng, G.D. Lin, M.P. Fan, L.Y. Liu, Z.C. Shi, Energy Storage Materials, 37 (2021) 387–395. https://doi.org/10.1016/j.ensm.2021.02.021

Y. Zhang, T.T. Zuo, J. Popovic, K. Lim, Y.X. Yin, J. Maier, Y.G. Guo, Mater. Today, 33 (2020) 56–74. https://doi.org/10.1016/j.mattod.2019.09.018

C. Yan, X.Q. Zhang, J.Q. Huang, Q.B. Liu, Q. Zhang, Trends Chem., 1 (2019) 693–704. https://doi.org/10.1016/j.trechm.2019.06.007

X.X. Bi, K. Amine, J. Lu, J. Mater. Chem. A, 8 (2020) 3563–3573. https://doi.org/10.1039/C9TA12414D

Y.B. He, Y. Qiao, Z. Chang, H.S. Zhou, Energy Environ. Sci., 12 (2019) 2327–2344. https://doi.org/10.1039/C8EE03651A

Y.B. He, Z. Chang, S.C. Wu, Y. Qiao, S.Y. Bai, K.Z. Jiang, P. He, H.S. Zhou, Adv. Energy Mater., 8 (2018) 1802130. https://doi.org/10.1002/aenm.201802130

Published

30-03-2024

Issue

Section

Reviews

How to Cite

The synthesis, characterization and application of Me(eIM)2 materials. (2024). Vietnam Journal of Catalysis and Adsorption, 13(1), 1-21. https://doi.org/10.62239/jca.2024.024

Share

Funding data

Most read articles by the same author(s)

1 2 3 4 > >> 

Similar Articles

1-10 of 350

You may also start an advanced similarity search for this article.