Preparation and photocatalytic activities for decomposition of methylene blue of zeolitic imidazolate framework-8
DOI:
https://doi.org/10.51316/jca.2020.035Keywords:
ZIF-8, Photocatalyst, Methylene blue, Metal-organic frameworkAbstract
In the present study, zeolitic imidazolate framework-8 (ZIF-8) is synthesized quickly in methanol solvent with the support of ultrasound, and application of photocatalyst for methylene blue (MB) decomposition reaction under UV radiation. The obtained ZIF-8 was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and UV-Vis diffuse reflectance spectra (DR-UV-Vis). The influence pH and kinetics of photocatalytic MB decomposition and reusability of ZIF-8, were also investigated. The results indicated that ZIF-8 could work effectively in the wide pH range from 4 to 12. When the initial pH of the solution increases to 12, the adsorption capacity and MB decomposition efficiency are both high. The MB decomposition on the ZIF-8 photocatalyst followed a pseudo-first-order kinetics model. The structural strength of ZIF-8 as well as the relatively high photocatalytic efficiency after reuse three times shows that ZIF-8 has good reusability and can be applied to treatment of organic pollutants in aqueous solution.
Downloads
References
K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 10186-10191. https://doi.org/10.1073/pnas.0602439103
J. Cravillon, S. Munzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Chem. Mater. 21 (2009) 1410-1412. https://doi.org/10.1021/cm900166h
L. H. Wee, T. Lescouet, J. Ethiraj, F. Bonino, R. Vidruk, E. Garrier, D. Packet, S. Bordiga, D. Farrusseng, M. Herskowitz, Chem. Cat. Chem. 5 (2013) 3562-3566. https://doi.org/10.1002/cctc.201300581
M. Zhu, D. Srinivas, S. Bhogeswararao, P. Ratnasamy, M. A. Carreon, Catal. Commun. 32 (2013) 36-40. https://doi.org/10.1016/j.catcom.2012.12.003
X. Yang, Z. Wen, Z. Wu and X. Luo, Inorg. Chem. Front. 5 (2018) 687-693. https://doi.org/10.1039/C7QI00752C
B. Shen, B. Wang, L. Zhu and L. Jiang, Nanomaterials 10 (2020) 1636. https://doi.org/10.3390/nano10091636
F. Hillman, J. M. Zimmerman, S. M. Paek, M. R. A. Hamid, W. T. Lim and H. K. Jeong, J. Mater. Chem. A 5 (2017) 6090-6099. https://doi.org/10.1039/C6TA11170J
W. Sun, X. Zhai, L. Zhao, Chemical Engineering Journal 289 (2016) 59-64. https://dx.doi.org/10.1016/j.cẹ.2015.12.076
Q. Wang, Y. Sun, S. Li, P. Zhang and Q. Yao, RSC Adv. 10 (2020) 37600-37620. https://doi.org/10.1039/D0RA07950B
X. Zhou, H. P. Zhang, G. Y. Wang, Z. G. Yao, Y. R. Tang, S. S. Zheng, J. Mol. Catal. A-Chem. 366 (2013) 43-47. https://doi.org/10.1016/j.molcata.2012.09.006
H-P. Jing, C-C. Wang, Y-W. Zhang, P. Wang and R. Li, RSC Adv. 4 (2014) 54454-54462. https://doi.org/10.1039/C4RA08820D
C. Hou, B. Hu and J. Zhu, Catalysts 8 (2018) 575. https://doi.org/10.3390/catal8120575