Adsorption properties of nanotube type halloysite clay mineral for La3+ ions

Authors

  • Le Thi Phuong Thao Hanoi University of Mining and Geology Author
  • Vo Thi Hanh Hanoi University of Mining - Geology Author
  • Bui Hoang Bac Hanoi University of Mining - Geology Author
  • Tran Thi Thu Huong Hanoi University of Mining - Geology Author
  • Chu Minh Hieu Hanoi University of Mining - Geology Author
  • Nguyen Ngoc Tinh Hanoi University of Mining - Geology Author
  • Nguyen Thi Phuong Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, Vietnam Author
  • Le Thi Duyen Hanoi University of Mining - Geology Author

DOI:

https://doi.org/10.62239/jca.2023.067

Keywords:

Halloysite, adsorption, La3+

Abstract

This paper presents the results of research on the adsorption capacity of La3+ ions from aqueous solution of nanotube-type halloysite. The influence of operational conditions such as contact time, initial concentration of La3+, initial pH of solution, halloysite mass and temperature on the adsorption of La3+ had also been examined. The results show that the optimal efficiency and adsorption capacity of La3+ reached 90.19% and 3.76 mg/g in the suitable conditions: haloysite mass 0.6 g/50 mL solution, initial La3+ ion concentration 50 mg/L, pH 5.8, contact time 60 minutes at room temperature (25oC). The adsorption isotherm was studied based on both Langmuir and Freundlich models. The adsorption kinetics were studied by both pseudo-first-order and pseudo-second-order kinetic models. These results open up prospects for the application of haloysite clay minerals to remove and recover La in polluted water.

Downloads

Download data is not yet available.

References

Kegl, T., et al., Journal of Hazardous Materials 386 (2020) 121632. https://doi.org/10.1016/j.jhazmat.2019.121632

Allahkarami, E., Rezai, B., Journal of Environmental Chemical Engineering 9(1) (2021) 104956. https://doi.org/10.1016/j.jece.2020.104956

da Costa, T.B., da Silva, M.G.C., Vieira, M.G.A., Journal of Rare Earths 38 (2020) 339-355. https://doi.org/10.1016/j.jre.2019.06.001

Anastopoulos, I., Bhatnagar, A., Lima, E.C., Journal of Molecular Liquids 221 (2016) 954–962. https://doi.org/10.1016/j.molliq.2016.06.076

Zhou, F., et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects 627 (2021) 127063.

https://doi.org/10.1016/j.colsurfa.2021.127063

Dou, W.S., et al., Applied Clay Science 229 (2022) 106693. https://doi.org/10.1016/j.clay.2022.106693

Dou, W.S., et al., Materials Letters 330 (2023) 133254. https://doi.org/10.1016/j.matlet.2022.133254

Ni, C.Q., et al., Journal of Environmental Chemical Engineering 9 (2021) 106701. https://doi.org/10.1016/j.jece.2021.106701

Zhang, Y., et al., Separation and Purification Technology 303 (2022) 122210.

https://doi.org/10.1016/j.seppur.2022.122210

Wang, J., et al., Applied Surface Science 608 (2023) 155141. https://doi.org/10.1016/j.apsusc.2022.155141

Luo, J., et al., Journal of Environmental Chemical Engineering 11 (2023) 109409. https://doi.org/10.1016/j.jece.2023.109409

Burdzy, K., Ju, Y., Kołodynska, D., Chemical Engineering Journal 461 (2023) 142059. https://doi.org/10.1016/j.cej.2023.142059

Aljohani, N.S., et al., Arabian Journal of Chemistry 16 (2023) 104652. https://doi.org/10.1016/j.arabjc.2023.104652

Abdel-Fadeel, M.A., et al., Journal of Saudi Chemical Society 26 (2022) 101475. https://doi.org/10.1016/j.jscs.2022.101475

Yuan, P., Tan, D., Annabi-Bergaya, F. Applied Clay Science 112-113 (2015) 75-93. https://doi.org/10.1016/j.clay.2015.05.001.

Zhang, Y., et al., Applied Clay Science 119 (2016) 8-17. https://doi.org/10.1016/j.clay.2015.06.034

Anastopoulos, I., et al., Journal of Molecular Liquids 269 (2018) 855–868. https://doi.org/10.1016/j.molliq.2018.08.104

Altun, T., Ecevit, H., Materials Chemistry and Physics 291 (2022) 126612. https://doi.org/10.1016/j.matchemphys.2022.126612

Bùi, H.B., et al., Hội nghị toàn quốc Khoa học trái đất và tài nguyên với phát triển bền vững (ERSD), Hà Nội 12/2018. https://doi.org/10.1016/j.molliq.2020.113077c.

Bui, H.B., et al., Engineering with Computers 38 (2022) 4257-4272. https://doi.org/10.1007/s00366-021-01459-8

Bui, H.B., et al., VNU Journal of Science: Earth and Environmental Sciences 38(2) (2022) 71-79. https://doi.org/10.25073/2588-1094/vnuees.4750

Bùi, H.B., et al., Tạp chí Phát triển Khoa học và Công nghệ – Khoa học Trái đất và Môi trường 5(1) (2021) 312-322.

Bui, H.B., et al., Chemosphere 282 (2021) 131012. https://doi.org/10.1016/j.chemosphere.2021.131012

Sheha, R.R., Journal of Colloid and Interface Science 310(1) (2007) 18-26. https://doi.org/10.1016/j.jcis.2007.01.047.

Published

09-03-2024

Issue

Section

Full Articles

How to Cite

Adsorption properties of nanotube type halloysite clay mineral for La3+ ions. (2024). Vietnam Journal of Catalysis and Adsorption, 12(4), 62-69. https://doi.org/10.62239/jca.2023.067

Share

Funding data

Most read articles by the same author(s)

Similar Articles

1-10 of 150

You may also start an advanced similarity search for this article.