Research on column adsorption of Zn2+ by hydroxyapatite granules

Authors

  • Le Thi Duyen Hanoi University of Mining - Geology Author
  • Le Thi Phuong Thao Hanoi University of Mining - Geology Author
  • Cong Tien Dung Hanoi University of Mining - Geology Author
  • Le Thi Vinh Hanoi University of Mining - Geology Author
  • Vu Thi Minh Hong Hanoi University of Mining - Geology Author
  • Pham Tien Dung Hanoi University of Mining - Geology Author
  • Dinh Thi Mai Thanh University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology Author

DOI:

https://doi.org/10.62239/jca.2023.076

Keywords:

hydroxyapatite granule, adsorption, removal of Zn2+ions

Abstract

Hydroxyapatite (HAp) granules were fabricated successfully from HAp powder and polyvinyl alcohol (PVA) additive by sintering method. The characterization of material was analyzed by color, durability in the water, XRD, EDX, SEM and BET. The obtained HAp granules were white, single phase of HAp, with specific surface area of 73 m2/g, size of granule about (2 × 10) mm. HAp granules were used for the removal of Zn2+ ions from aqueous solution. The effect of factors on the Zn2+ adsorption property was investigated. The adsorption efficiency and capacity obtained 77.15 % and 2.57 mg/g, respectively at suitable batch adsorption condition: HAp granule mass of 0.5 g/ 50mL solution, initial concentration of 20 mg/L Zn2+, contact time 40 minutes and pH0 5.7 at 30 oC. The adsorption efficiency reached about 99.55 % at suitable column adsorption condition: contact time of 3,5 min, flow rate of 14 mL/min, adsorption zone height of 4Ф (Ф = 2.5 cm), initial concentration of 20 mg/L Zn2+, HAp granule mass of 11.9 g/ 2L solution, pH0 5.7 at 30 oC. 

Downloads

Download data is not yet available.

References

Fu, F. and Wang, Q., J. Environ. Manage. 92(3) (2011) 407–418. http//doi.ofg/10.1016/j.jenvman.2010.11.011

Phạm luận, Vai trò của muối khoáng và nguyên tố vi lượng đối với sự sống của con người, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội, 1998.

Sheha, R.R., Journal of Colloid and Interface Science, Vol. 310(1) (2007) 18-26. https://doi.org/10.1016/j.jcis.2007.01.047

Sumathi, S.B.G., Ceramics International 40(10, Part A) (2014) 15655-15662. https://doi.org/10.1016/j.ceramint.2014.07.086

Krylova, E.A., et al., Hydroxyapatite-Alginate Sructure as Living Cells Supporting System, Institute of Biochemical Physics RAS, Russia.

Kasioptas, A.P.C., et al., Mineralogical Magazine 72(1) (2008) 77-80. https://doi.org/10.1180/minmag.2008.072.1.77

Tim, V.C., Porous Scaffolds for the Replacement of Large Bone Defects: a Biomechanical Design Study, PhD thesis, KU. Leuven – Belgium, 2005.

Flávio, A.C.A., et al., Ceramics International 42 (2016) 2271–2280. https://doi.org/10.1016/j.ceramint.2015.10.021

Guangfei, S., et al., Materials Science and Engineering: C 39 (2014) 67-72. https://doi.org/10.1016/j.msec.2014.02.023

Neha, G., et al., Journal of the Taiwan Institute of Chemical Engineers 43(1) (2012) 125-131. https://doi.org/10.1016/j.jtice.2011.07.009

Ronghai, Z., et al., Catalysis Today 139(1-2) (2008) 94-99. https://doi.org/10.1016/j.cattod.2008.08.011

Arunima, N. and Brij, B., Materials today: proceedings 46, Part 20 (2021) 11029-11034. https://doi.org/10.1016/j.matpr.2021.02.149

Mousa, S.M., et al., Journal of Saudi Chemical Society 20 (2016) 357-365. https://doi.org/10.1016/j.jscs.2014.12.006

Nirav, P.R., et al., Journal of Environmental Management 179 (2016) 1-20. https://doi.org/10.1016/j.jenvman.2016.04.045

Armin, V., et al., Environmental Nanotechnology, Monitoring & Management 12 (2019) 100233. https://doi.org/10.1016/j.enmm.2019.100233

Doaa, A.E., et al., Arabian Journal of Chemistry 13(11) (2020) 7695-7706. https://doi.org/10.1016/j.arabjc.2020.09.005

Andrew, N.A., et al., Journal of Environmental Management 302, Part A (2022) 113989. https://doi.org/10.1016/j.jenvman.2021.11398917

Mobasherpour, I., et al., Arabian Journal of Chemistry 5(4) (2012) 439-446. https://doi.org/10.1016/j.arabjc.2010.12.022

Wei, W., et al., Desalination 263(1-3) (2010) 89-96. https://doi.org/10.1016/j.desal.2010.06.043

Deyi, Z., et al., Journal of Hazardous Materials 241-242 (2012) 418-426. https://doi.org/10.1016/j.jhazmat.2012.09.066

Bahdod, A., et al., Water research 43 (2009) 313-318. https://doi.org/10.1016/j.watres.2008.10.023

Huijuan, H., et al., Chemical Engineering Journal 211-212 (2012) 336-342. https://doi.org/10.1016/j.cej.2012.09.100

Sanna, H., et al., Chemical Engineering Journal 252 (2014) 64-74. https://doi.org/10.1016/j.cej.2014.04.101

Kai, H.Z., et al., Materials Science and Engineering C 30 (2010) 283–287. https://doi.org/10.1016/j.msec.2009.11.003

Veljovic´ Dj., et al., Ceramics International 36 (2010) 595–603. https://doi.org/10.1016/j.ceramint.2009.09.038

Dean-MO, L., Ceramics International 24 (1998) 441-446. https://doi.org/10.1016/S0272-8842(97)00033-3

Janis, L., et al., Journal of the European Ceramic Society 33 (2013) 3437–3443. https://doi.org/10.1016/j.jeurceramsoc.2013.06.010

Duyen, T.L., et al., Journal of Chemistry 2019, Article ID 8620181 (2019) 10 pages. https://doi.org/10.1155/2019/8620181

Phương, T.N., et al., Tạp chí Khoa học & Công nghệ 50(3E) (2012) 1220-1227.

Hieu, M.T.D., et al., Journal of Environmental Science and Engineering B 5 (2016) 371-378. https://doi:10.17265/2162-5263/2016.07.008

Published

09-03-2024

Issue

Section

Full Articles

How to Cite

Research on column adsorption of Zn2+ by hydroxyapatite granules. (2024). Vietnam Journal of Catalysis and Adsorption, 12(4), 126-135. https://doi.org/10.62239/jca.2023.076

Share

Most read articles by the same author(s)

Similar Articles

1-10 of 202

You may also start an advanced similarity search for this article.