Research on adsorption of Cd2+ by hydroxyapatite/chitosan nanocomposite
DOI:
https://doi.org/10.51316/jca.2021.025Keywords:
hydroxyapatite/chitosan, nanocomposite, adsorption of Cd2+Abstract
Hydroxyapatite/chitosan nanocomposite (n-HAp/ChS) was synthesized successfully from 0.5 M Ca(NO3)2 + 5 % chitosan/2 % acetic acid solution and 0.3 M (NH4)2HPO4 solution at pH 10-11 using 28 % NH3 solution by chemical precipitation method. n-HAp/ChS was used for the adsorption of Cd2+ from aqueous solution. The effect of factors on the Cd2+ adsorption efficiency and capacity was investigated. The adsorption efficiency and capacity obtained 97,75 % and 58,65 mg/g respectively at suitable condition: pH0 5.9, n-HAp/ChS mass of 0.1 g, initial Cd2+ concentration of 60 mg/L, contact time 40 minutes at room temperature (30oC). The experimental data was described by Langmuir and Freundlich isotherm models.
Downloads
References
Fu F., Wang Q., J. Environ. Manage., Removal of heavy metal ions from wastewaters: a review (2011) 92(3) 407–418. http://doi.org/10.1016/j.jenvman.2010.11.011.
Ziagova M., Dimitriadis G., Aslanidou D., Papaioannou X., Litopoulou Tzannetaki E., Liakopoulou-Kyriakides M., Bioresour. Technol., Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures (2007) 98(15) 2859–2865. http://doi.org/10.1016/j.biortech.2006.09.043.
Sumathi Shanmugam Buvaneswari Gopal, Ceram. Int., Copper substituted hydroxyapatite and fluorapatite: Synthesis, characterization and antimicrobial properties (2014) 40(10, Part A) 15655-15662. https://doi.org/10.1016/j.ceramint.2014.07.086.
Kasioptas Argyrios P.C., V. Putnis Christine, Putnis Andrew, Mineral Mag, Pseudomorphic replacement of single calcium carbonate crystals by polycrystalline apatite (2018) 72(1) 77-80. https://doi.org/10.1180/minmag.2008.072.1.77.
Krylova E.A., Krylov A.A.I. S.E., Plashchina I.G., Nefedov P.V., Hydroxyapatite-Alginate Sructure as Living Cells Supporting System, N.N. Emanuel Institute of Biochemical Physics RAS, Russia (2004).
Tim V.C., Porous Scaffolds for the Replacement of Large Bone Defects: a Biomechanical Design Study. PhD thesis, KU. Leuven - Belgium (2005).
Flávio Augusto Cavadas Andrade, Luci Cristina de Oliveira Vercik, Fernando Jorge Monteiro, Eliana Cristina da Silva Rigo, Ceram. Int., Preparation, characterization and antibacterial properties of silver nanoparticles–hydroxyapatite composites by a simple and eco-friendly method (2016) 42 2271–2280. https://doi.org/10.1016/j.ceramint.2015.10.021.
Guangfei Sun, Jun Ma, Shengmin Zhang, Mater. Sci. Eng. C, Electrophoretic deposition of zinc-substituted hydroxyapatite coatings (2014) 39 67-72. https://doi.org/10.1016/j.msec.2014.02.023
Duyen Thi Le, Thao Phuong Thi Le, Hai Thi Do, Hanh Thi Vo, Nam Thi Pham, Thom Thi Nguyen, Hong Thi Cao, Phuong Thu Nguyen, Thanh Mai Thi Dinh, Hai Viet Le, and Dai Lam Tran, J. Chem., Fabrication of Porous Hydroxyapatite Granules as an Effective Adsorbent for the Removal of Aqueous Pb(II) Ions (2019) 10 pages. https:// doi.org/10.1155/2019/8620181.
Neha G., Atul K., Chattopadhyaya M.C., J Taiwan Inst Chem Eng, Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution (2012) 43(1) 125-131. http://doi.org/10.1016/j.jtice.2011.07.009
Le Thi Duyen, Le Thi Phuong Thao, Do Thi Hai, Pham Tien Dung, Pham Thi Nam, Nguyen Thi Thom, Cao Thi Hong, Cao Thuy Linh, Dinh Thi Mai Thanh, Vietnam J. Chem., Removal of Cd2+ by hydroxyapatite adsorption granule from aqueous solution (2018) 56(5) 542-547. https:// doi.org/10.1002/vjch.201800044.
Shanika Fernando M., Rohini M. de Silva, Nalin de Silva K.M., Appl. Surf. Sci., Synthesis, characterization and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions (2015) 351 95-103. https://doi.org/10.1016/j.apsusc.2015.05.092.
Sheha R.R., J. Colloid Interface Sci., Sorption behavior of Zn(II) ions on synthesized hydroxyapatite (2007) 310(1) 18-26. https://doi.org/10.1016/j.jcis.2007.01.047.
Bahdod A., El Asri S., Saoiabi A., Coradin T., Laghzizil A., Water Res., Adsorption of phenol from an aqueous solution by selected apatite adsorbents: Kinetic process and impact of the surface properties (2009) 43 313-318. https://doi.org/10.1016/j.watres.2008.10.023.
Deyi Zhang, Heming Luo, Liwen Zheng, Kunjie Wanga, Hongxia Li, Yi Wanga, Huixia Feng, J. Hazard. Mater., Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution (2012) 241-242 418-426. https://doi.org/10.1016/j.jhazmat.2012.09.066.
Huijuan Hou, Ronghui Zhou, Peng Wu, Lan Wu, Chem. Eng. J., Removal of Congo red dye from aqueous solution with hydroxyapatite/chitosan composite (2012) 211-212 336-342. https://doi.org/10.1016/j.cej.2012.09.100.
Sanna Hokkanen, Eveliina Repo, Lena Johansson Westholm, Song Lou, Tuomo Sainio, Mika Sillanpää, Chem. Eng. J., Adsorption of Ni2+, Cd2+, PO43- and NO3- from aqueous solutions by nanostructured microfibrillated cellulose modified with carbonated hydroxyapatite (2014) 252 64-74. https://doi.org/10.1016/j.cej.2014.04.101.
Wei Wei, Rong Sun, Jing Cui, Zhenggui Wei, Desalination, Removal of nitrobenzene from aqueous solution by adsorption on nanocrystalline hydroxyapatite (2010) 263(1-3) 89-96. https://doi.org/10.1016/j.desal.2010.06.043.
Taher A. Salaheldin, Ahmad Mohammad, Mohamed A. Hassan, Bahgat Ezzat El Anadouli, J Taiwan Inst Chem Eng, Development of nano-hydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment (2012) 45(4) 1571-1577. https://doi.org/10.1016/j.jtice.2013.10.008.
Lê Thị Duyên, Đỗ Thị Hải, Phạm Tiến Dũng, Cao Thị Hồng, Nguyễn Thu Phương và Đinh Thị Mai Thanh, Tạp chí khoa học, Trường Đại học Sư phạm Hà Nội, Nghiên cứu tổng hợp và đặc trưng hóa lý của bột nanocomposit hydroxyapatit/chitosan (2016) 61(4) 66-72. https://doi.org/10.18173/2354-1059.2016-0011.