A theoretical study on the CO2 methanation over Ni5/AC catalysts by means of density functional theory. Part I: Adsorption and activation stages
DOI:
https://doi.org/10.51316/jca.2020.006Keywords:
CO2, adsorption, cluster, nickel, ACAbstract
The adsorption and activation processes of CO2 and H2 on Ni5 catalyst supported on activated carbon (Ni5/AC) were investigated by using density functional theory at GGA-PBE/DZP level of theory and climbing image – nudged elastic band (CI-NEB) method. The adsorption energy, charges on atoms, bond orders and geometry parameters were calculated and analyzed. The most favourable adsorption configurations were determined. The results show that H2 and CO2 are chemically adsorbed on Ni5/AC. The adsorption process does not involved a transition state. CO2 is strongly activated on Ni5/AC system.
Downloads
References
Liu, M., Yi, Y., Wang, L., Guo, H., & Bogaerts, Appl. Catal. A 9(3) (2019), p.275. https://doi.org/10.3390/catal9030275
Wang, W., Wang, S., Ma, X., & Gong, J. Chemical Society Reviews, 40(7) (2011),p. 3703-3727. https://doi.org/10.1039/C1CS15008A
Su, X., Xu, J., Liang, B., Duan, H., Hou, B., & Huang, Y. Journal of Energy Chemistry, 25(4) (2016),p. 553-565. https://doi.org/10.1016/j.jechem.2016.03.009
Frontera, P., Macario, A., Ferraro, M., & Antonucci, P. Catalysts, 7(2) (2017), p.59. https://doi.org/10.3390/catal7020059
Li, W., Wang, H., Jiang, X., Zhu, J., Liu, Z., Guo, X., & Song, C. RSC advances, 8(14) (2018), p. 7651-7669. https://doi.org/10.1039/C7RA13546G
Khanna, S. N., & Jena, P. Chemical physics letters, 336(5-6) (2001), p.467- 472. https://doi.org/10.1016/S0009-2614(01)00152-X
Goel, S., & Masunov, A. E. Journal of molecular modeling, 18(2) (2012), p.783-790. https://doi.org/10.1007/s00894-011-1100-x
Reddy, B. V., Nayak, S. K., Khanna, S. N., Rao, B. K., & Jena, P. The Journal of Physical Chemistry A, 102(10) (1998), p.1748-1759. https://doi.org/10.1021/jp980262b
Perdew, J. P., Burke, K., & Ernzerhof, M. Physical review letters, 77(18) (1996), p. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
Hamann, D. R., Schlüter, M., & Chiang, C. Physical Review Letters, 43(20) (1997), p.1494. https://doi.org/10.1103/PhysRevLett.43.1494
Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. Journal of Physics: Condensed Matter, 14(11) (2002), p.2745. https://doi.org/10.1088/0953-8984/14/11/302
Henkelman, G., Uberuaga, B. P., & Jónsson, H. The Journal of chemical physics, 113(22) (2000), p.9901-9904. https://doi.org/10.1063/1.1329672
Mayer, I. Journal of computational chemistry, 28(1) (2007), p.204-221. https://doi.org/10.1002/jcc.20494.
Harris, P. J., Liu, Z., & Suenaga, K. In J Phys: Conf Series, 241(1) (2010), p. 012050. https://doi.org/10.1088/1742-6596/241/1/012050
Stamatatos, T. C., Escuer, A., Abboud, K. A., Raptopoulou, C. P., Perlepes, S. P., & Christou, G. Inorganic chemistry, 47(24) (2008), 11825-11838. https://doi.org/10.1021/ic801555e
Weatherbee, G. D., & Bartholomew, C. H. Journal of Catalysis, 77(2) (1982),p. 460-472. https://doi.org/10.1016/0021-9517(82)90186-5
Choe, S. J., Kang, H. J., Kim, S., Park, S., Park, D. H., & Huh, D. S. Bulletin-Korean Chemical Society, 26(11) (2005), p.1682. https://doi.org/10.5012/bkcs.2005.26.11.1682
Vesselli, E., Rizzi, M., De Rogatis, L., Ding, X., Baraldi, A., Comelli, G., ... & Baldereschi, A. The Journal of Physical Chemistry Letters, 1(1) (2010), p.402-406. https://doi.org/10.1021/jz900221c
Wang, Y. G., Wiberg, K. B., & Werstiuk, N. H. The Journal of Physical Chemistry A, 111(18) (2007),p. 3592-3601. https://doi.org/10.1021/jp067579t
Bothra, P., Periyasamy, G., & Pati, S. K. Physical Chemistry Chemical Physics, 15(15) (2013), p.5701-5706. https://doi.org/10.1039/C3CP44495C