A theoretical study on the CO2 methanation over Ni5/AC catalysts by means of density functional theory. Part I: Adsorption and activation stages

Authors

  • Van Thi Minh Hue Hanoi National University of Education Author
  • Phung Thi Lan Hanoi National University of Education Author
  • Nguyen Thi Thu Ha Hanoi National University of Education Author
  • Le Minh Cam Hanoi National University of Education Author
  • Nguyen Ngoc Ha Hanoi National University of Education Author

DOI:

https://doi.org/10.51316/jca.2020.006

Keywords:

CO2, adsorption, cluster, nickel, AC

Abstract

The adsorption and activation processes of CO2 and H2 on Nicatalyst supported on activated carbon (Ni5/AC) were investigated by using density functional theory at GGA-PBE/DZP level of theory and climbing image – nudged elastic band (CI-NEB) method. The adsorption energy, charges on atoms, bond orders and geometry parameters were calculated and analyzed. The most favourable adsorption configurations were determined. The results show that H2 and CO2 are chemically adsorbed on Ni5/AC. The adsorption process does not involved a transition state. COis strongly activated on Ni5/AC system.

Downloads

Download data is not yet available.

References

Liu, M., Yi, Y., Wang, L., Guo, H., & Bogaerts, Appl. Catal. A 9(3) (2019), p.275. https://doi.org/10.3390/catal9030275

Wang, W., Wang, S., Ma, X., & Gong, J. Chemical Society Reviews, 40(7) (2011),p. 3703-3727. https://doi.org/10.1039/C1CS15008A

Su, X., Xu, J., Liang, B., Duan, H., Hou, B., & Huang, Y. Journal of Energy Chemistry, 25(4) (2016),p. 553-565. https://doi.org/10.1016/j.jechem.2016.03.009

Frontera, P., Macario, A., Ferraro, M., & Antonucci, P. Catalysts, 7(2) (2017), p.59. https://doi.org/10.3390/catal7020059

Li, W., Wang, H., Jiang, X., Zhu, J., Liu, Z., Guo, X., & Song, C. RSC advances, 8(14) (2018), p. 7651-7669. https://doi.org/10.1039/C7RA13546G

Khanna, S. N., & Jena, P. Chemical physics letters, 336(5-6) (2001), p.467- 472. https://doi.org/10.1016/S0009-2614(01)00152-X

Goel, S., & Masunov, A. E. Journal of molecular modeling, 18(2) (2012), p.783-790. https://doi.org/10.1007/s00894-011-1100-x

Reddy, B. V., Nayak, S. K., Khanna, S. N., Rao, B. K., & Jena, P. The Journal of Physical Chemistry A, 102(10) (1998), p.1748-1759. https://doi.org/10.1021/jp980262b

Perdew, J. P., Burke, K., & Ernzerhof, M. Physical review letters, 77(18) (1996), p. 3865. https://doi.org/10.1103/PhysRevLett.77.3865

Hamann, D. R., Schlüter, M., & Chiang, C. Physical Review Letters, 43(20) (1997), p.1494. https://doi.org/10.1103/PhysRevLett.43.1494

Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. Journal of Physics: Condensed Matter, 14(11) (2002), p.2745. https://doi.org/10.1088/0953-8984/14/11/302

Henkelman, G., Uberuaga, B. P., & Jónsson, H. The Journal of chemical physics, 113(22) (2000), p.9901-9904. https://doi.org/10.1063/1.1329672

Mayer, I. Journal of computational chemistry, 28(1) (2007), p.204-221. https://doi.org/10.1002/jcc.20494.

Harris, P. J., Liu, Z., & Suenaga, K. In J Phys: Conf Series, 241(1) (2010), p. 012050. https://doi.org/10.1088/1742-6596/241/1/012050

Stamatatos, T. C., Escuer, A., Abboud, K. A., Raptopoulou, C. P., Perlepes, S. P., & Christou, G. Inorganic chemistry, 47(24) (2008), 11825-11838. https://doi.org/10.1021/ic801555e

Weatherbee, G. D., & Bartholomew, C. H. Journal of Catalysis, 77(2) (1982),p. 460-472. https://doi.org/10.1016/0021-9517(82)90186-5

Choe, S. J., Kang, H. J., Kim, S., Park, S., Park, D. H., & Huh, D. S. Bulletin-Korean Chemical Society, 26(11) (2005), p.1682. https://doi.org/10.5012/bkcs.2005.26.11.1682

Vesselli, E., Rizzi, M., De Rogatis, L., Ding, X., Baraldi, A., Comelli, G., ... & Baldereschi, A. The Journal of Physical Chemistry Letters, 1(1) (2010), p.402-406. https://doi.org/10.1021/jz900221c

Wang, Y. G., Wiberg, K. B., & Werstiuk, N. H. The Journal of Physical Chemistry A, 111(18) (2007),p. 3592-3601. https://doi.org/10.1021/jp067579t

Bothra, P., Periyasamy, G., & Pati, S. K. Physical Chemistry Chemical Physics, 15(15) (2013), p.5701-5706. https://doi.org/10.1039/C3CP44495C

Published

30-04-2020

Issue

Section

Full Articles

How to Cite

A theoretical study on the CO2 methanation over Ni5/AC catalysts by means of density functional theory. Part I: Adsorption and activation stages. (2020). Vietnam Journal of Catalysis and Adsorption, 9(1), 33-38. https://doi.org/10.51316/jca.2020.006

Share

Similar Articles

1-10 of 293

You may also start an advanced similarity search for this article.